SUBROUTINE DG7LIT(D, G, IV, LIV, LV, P, PS, V, X, Y) C C *** CARRY OUT NL2SOL-LIKE ITERATIONS FOR GENERALIZED LINEAR *** C *** REGRESSION PROBLEMS (AND OTHERS OF SIMILAR STRUCTURE) *** C C *** PARAMETER DECLARATIONS *** C INTEGER LIV, LV, P, PS INTEGER IV(LIV) DOUBLE PRECISION D(P), G(P), V(LV), X(P), Y(P) C C-------------------------- PARAMETER USAGE -------------------------- C C D.... SCALE VECTOR. C IV... INTEGER VALUE ARRAY. C LIV.. LENGTH OF IV. MUST BE AT LEAST 82. C LH... LENGTH OF H = P*(P+1)/2. C LV... LENGTH OF V. MUST BE AT LEAST P*(3*P + 19)/2 + 7. C G.... GRADIENT AT X (WHEN IV(1) = 2). C P.... NUMBER OF PARAMETERS (COMPONENTS IN X). C PS... NUMBER OF NONZERO ROWS AND COLUMNS IN S. C V.... FLOATING-POINT VALUE ARRAY. C X.... PARAMETER VECTOR. C Y.... PART OF YIELD VECTOR (WHEN IV(1)= 2, SCRATCH OTHERWISE). C C *** DISCUSSION *** C C DG7LIT PERFORMS NL2SOL-LIKE ITERATIONS FOR A VARIETY OF C REGRESSION PROBLEMS THAT ARE SIMILAR TO NONLINEAR LEAST-SQUARES C IN THAT THE HESSIAN IS THE SUM OF TWO TERMS, A READILY-COMPUTED C FIRST-ORDER TERM AND A SECOND-ORDER TERM. THE CALLER SUPPLIES C THE FIRST-ORDER TERM OF THE HESSIAN IN HC (LOWER TRIANGLE, STORED C COMPACTLY BY ROWS IN V, STARTING AT IV(HC)), AND DG7LIT BUILDS AN C APPROXIMATION, S, TO THE SECOND-ORDER TERM. THE CALLER ALSO C PROVIDES THE FUNCTION VALUE, GRADIENT, AND PART OF THE YIELD C VECTOR USED IN UPDATING S. DG7LIT DECIDES DYNAMICALLY WHETHER OR C NOT TO USE S WHEN CHOOSING THE NEXT STEP TO TRY... THE HESSIAN C APPROXIMATION USED IS EITHER HC ALONE (GAUSS-NEWTON MODEL) OR C HC + S (AUGMENTED MODEL). C C IF PS .LT. P, THEN ROWS AND COLUMNS PS+1...P OF S ARE KEPT C CONSTANT. THEY WILL BE ZERO UNLESS THE CALLER SETS IV(INITS) TO C 1 OR 2 AND SUPPLIES NONZERO VALUES FOR THEM, OR THE CALLER SETS C IV(INITS) TO 3 OR 4 AND THE FINITE-DIFFERENCE INITIAL S THEN C COMPUTED HAS NONZERO VALUES IN THESE ROWS. C C IF IV(INITS) IS 3 OR 4, THEN THE INITIAL S IS COMPUTED BY C FINITE DIFFERENCES. 3 MEANS USE FUNCTION DIFFERENCES, 4 MEANS C USE GRADIENT DIFFERENCES. FINITE DIFFERENCING IS DONE THE SAME C WAY AS IN COMPUTING A COVARIANCE MATRIX (WITH IV(COVREQ) = -1, -2, C 1, OR 2). C C FOR UPDATING S,DG7LIT ASSUMES THAT THE GRADIENT HAS THE FORM C OF A SUM OVER I OF RHO(I,X)*GRAD(R(I,X)), WHERE GRAD DENOTES THE C GRADIENT WITH RESPECT TO X. THE TRUE SECOND-ORDER TERM THEN IS C THE SUM OVER I OF RHO(I,X)*HESSIAN(R(I,X)). IF X = X0 + STEP, C THEN WE WISH TO UPDATE S SO THAT S*STEP IS THE SUM OVER I OF C RHO(I,X)*(GRAD(R(I,X)) - GRAD(R(I,X0))). THE CALLER MUST SUPPLY C PART OF THIS IN Y, NAMELY THE SUM OVER I OF C RHO(I,X)*GRAD(R(I,X0)), WHEN CALLING DG7LIT WITH IV(1) = 2 AND C IV(MODE) = 0 (WHERE MODE = 38). G THEN CONTANS THE OTHER PART, C SO THAT THE DESIRED YIELD VECTOR IS G - Y. IF PS .LT. P, THEN C THE ABOVE DISCUSSION APPLIES ONLY TO THE FIRST PS COMPONENTS OF C GRAD(R(I,X)), STEP, AND Y. C C PARAMETERS IV, P, V, AND X ARE THE SAME AS THE CORRESPONDING C ONES TO NL2SOL (WHICH SEE), EXCEPT THAT V CAN BE SHORTER C (SINCE THE PART OF V THAT NL2SOL USES FOR STORING D, J, AND R IS C NOT NEEDED). MOREOVER, COMPARED WITH NL2SOL, IV(1) MAY HAVE THE C TWO ADDITIONAL OUTPUT VALUES 1 AND 2, WHICH ARE EXPLAINED BELOW, C AS IS THE USE OF IV(TOOBIG) AND IV(NFGCAL). THE VALUES IV(D), C IV(J), AND IV(R), WHICH ARE OUTPUT VALUES FROM NL2SOL (AND C NL2SNO), ARE NOT REFERENCED BY DG7LIT OR THE SUBROUTINES IT CALLS. C C WHEN DG7LIT IS FIRST CALLED, I.E., WHEN DG7LIT IS CALLED WITH C IV(1) = 0 OR 12, V(F), G, AND HC NEED NOT BE INITIALIZED. TO C OBTAIN THESE STARTING VALUES,DG7LIT RETURNS FIRST WITH IV(1) = 1, C THEN WITH IV(1) = 2, WITH IV(MODE) = -1 IN BOTH CASES. ON C SUBSEQUENT RETURNS WITH IV(1) = 2, IV(MODE) = 0 IMPLIES THAT C Y MUST ALSO BE SUPPLIED. (NOTE THAT Y IS USED FOR SCRATCH -- ITS C INPUT CONTENTS ARE LOST. BY CONTRAST, HC IS NEVER CHANGED.) C ONCE CONVERGENCE HAS BEEN OBTAINED, IV(RDREQ) AND IV(COVREQ) MAY C IMPLY THAT A FINITE-DIFFERENCE HESSIAN SHOULD BE COMPUTED FOR USE C IN COMPUTING A COVARIANCE MATRIX. IN THIS CASE DG7LIT WILL MAKE A C NUMBER OF RETURNS WITH IV(1) = 1 OR 2 AND IV(MODE) POSITIVE. C WHEN IV(MODE) IS POSITIVE, Y SHOULD NOT BE CHANGED. C C IV(1) = 1 MEANS THE CALLER SHOULD SET V(F) (I.E., V(10)) TO F(X), THE C FUNCTION VALUE AT X, AND CALL DG7LIT AGAIN, HAVING CHANGED C NONE OF THE OTHER PARAMETERS. AN EXCEPTION OCCURS IF F(X) C CANNOT BE EVALUATED (E.G. IF OVERFLOW WOULD OCCUR), WHICH C MAY HAPPEN BECAUSE OF AN OVERSIZED STEP. IN THIS CASE C THE CALLER SHOULD SET IV(TOOBIG) = IV(2) TO 1, WHICH WILL C CAUSE DG7LIT TO IGNORE V(F) AND TRY A SMALLER STEP. NOTE C THAT THE CURRENT FUNCTION EVALUATION COUNT IS AVAILABLE C IN IV(NFCALL) = IV(6). THIS MAY BE USED TO IDENTIFY C WHICH COPY OF SAVED INFORMATION SHOULD BE USED IN COM- C PUTING G, HC, AND Y THE NEXT TIME DG7LIT RETURNS WITH C IV(1) = 2. SEE MLPIT FOR AN EXAMPLE OF THIS. C IV(1) = 2 MEANS THE CALLER SHOULD SET G TO G(X), THE GRADIENT OF F AT C X. THE CALLER SHOULD ALSO SET HC TO THE GAUSS-NEWTON C HESSIAN AT X. IF IV(MODE) = 0, THEN THE CALLER SHOULD C ALSO COMPUTE THE PART OF THE YIELD VECTOR DESCRIBED ABOVE. C THE CALLER SHOULD THEN CALL DG7LIT AGAIN (WITH IV(1) = 2). C THE CALLER MAY ALSO CHANGE D AT THIS TIME, BUT SHOULD NOT C CHANGE X. NOTE THAT IV(NFGCAL) = IV(7) CONTAINS THE C VALUE THAT IV(NFCALL) HAD DURING THE RETURN WITH C IV(1) = 1 IN WHICH X HAD THE SAME VALUE AS IT NOW HAS. C IV(NFGCAL) IS EITHER IV(NFCALL) OR IV(NFCALL) - 1. MLPIT C IS AN EXAMPLE WHERE THIS INFORMATION IS USED. IF G OR HC C CANNOT BE EVALUATED AT X, THEN THE CALLER MAY SET C IV(TOOBIG) TO 1, IN WHICH CASE DG7LIT WILL RETURN WITH C IV(1) = 15. C C *** GENERAL *** C C CODED BY DAVID M. GAY. C THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH C SUPPORTED IN PART BY D.O.E. GRANT EX-76-A-01-2295 TO MIT/CCREMS. C C (SEE NL2SOL FOR REFERENCES.) C C+++++++++++++++++++++++++++ DECLARATIONS ++++++++++++++++++++++++++++ C C *** LOCAL VARIABLES *** C INTEGER DUMMY, DIG1, G01, H1, HC1, I, IPIV1, J, K, L, LMAT1, 1 LSTGST, PP1O2, QTR1, RMAT1, RSTRST, STEP1, STPMOD, S1, 2 TEMP1, TEMP2, W1, X01 DOUBLE PRECISION E, STTSST, T, T1 C C *** CONSTANTS *** C DOUBLE PRECISION HALF, NEGONE, ONE, ONEP2, ZERO C C *** EXTERNAL FUNCTIONS AND SUBROUTINES *** C LOGICAL STOPX DOUBLE PRECISION DD7TPR, DL7SVX, DL7SVN, DRLDST, DR7MDC, DV2NRM EXTERNAL DA7SST, DD7TPR,DF7HES,DG7QTS,DITSUM, DL7MST,DL7SRT, 1 DL7SQR, DL7SVX, DL7SVN, DL7TVM,DL7VML,DPARCK, DRLDST, 2 DR7MDC, DS7LUP, DS7LVM, STOPX,DV2AXY,DV7CPY, DV7SCP, 3 DV2NRM C C DA7SST.... ASSESSES CANDIDATE STEP. C DD7TPR... RETURNS INNER PRODUCT OF TWO VECTORS. C DF7HES.... COMPUTE FINITE-DIFFERENCE HESSIAN (FOR COVARIANCE). C DG7QTS.... COMPUTES GOLDFELD-QUANDT-TROTTER STEP (AUGMENTED MODEL). C DITSUM.... PRINTS ITERATION SUMMARY AND INFO ON INITIAL AND FINAL X. C DL7MST... COMPUTES LEVENBERG-MARQUARDT STEP (GAUSS-NEWTON MODEL). C DL7SRT.... COMPUTES CHOLESKY FACTOR OF (LOWER TRIANG. OF) SYM. MATRIX. C DL7SQR... COMPUTES L * L**T FROM LOWER TRIANGULAR MATRIX L. C DL7TVM... COMPUTES L**T * V, V = VECTOR, L = LOWER TRIANGULAR MATRIX. C DL7SVX... ESTIMATES LARGEST SING. VALUE OF LOWER TRIANG. MATRIX. C DL7SVN... ESTIMATES SMALLEST SING. VALUE OF LOWER TRIANG. MATRIX. C DL7VML.... COMPUTES L * V, V = VECTOR, L = LOWER TRIANGULAR MATRIX. C DPARCK.... CHECK VALIDITY OF IV AND V INPUT COMPONENTS. C DRLDST... COMPUTES V(RELDX) = RELATIVE STEP SIZE. C DR7MDC... RETURNS MACHINE-DEPENDENT CONSTANTS. C DS7LUP... PERFORMS QUASI-NEWTON UPDATE ON COMPACTLY STORED LOWER TRI- C ANGLE OF A SYMMETRIC MATRIX. C STOPX.... RETURNS .TRUE. IF THE BREAK KEY HAS BEEN PRESSED. C DV2AXY.... COMPUTES SCALAR TIMES ONE VECTOR PLUS ANOTHER. C DV7CPY.... COPIES ONE VECTOR TO ANOTHER. C DV7SCP... SETS ALL ELEMENTS OF A VECTOR TO A SCALAR. C DV2NRM... RETURNS THE 2-NORM OF A VECTOR. C C *** SUBSCRIPTS FOR IV AND V *** C INTEGER CNVCOD, COSMIN, COVMAT, COVREQ, DGNORM, DIG, DSTNRM, F, 1 FDH, FDIF, FUZZ, F0, GTSTEP, H, HC, IERR, INCFAC, INITS, 2 IPIVOT, IRC, KAGQT, KALM, LMAT, LMAX0, LMAXS, MODE, MODEL, 3 MXFCAL, MXITER, NEXTV, NFCALL, NFGCAL, NFCOV, NGCOV, 4 NGCALL, NITER, NVSAVE, PHMXFC, PREDUC, QTR, RADFAC, 5 RADINC, RADIUS, RAD0, RCOND, RDREQ, REGD, RELDX, RESTOR, 6 RMAT, S, SIZE, STEP, STGLIM, STLSTG, STPPAR, SUSED, 7 SWITCH, TOOBIG, TUNER4, TUNER5, VNEED, VSAVE, W, WSCALE, 8 XIRC, X0 C C *** IV SUBSCRIPT VALUES *** C C/6 C DATA CNVCOD/55/, COVMAT/26/, COVREQ/15/, DIG/37/, FDH/74/, H/56/, C 1 HC/71/, IERR/75/, INITS/25/, IPIVOT/76/, IRC/29/, KAGQT/33/, C 2 KALM/34/, LMAT/42/, MODE/35/, MODEL/5/, MXFCAL/17/, C 3 MXITER/18/, NEXTV/47/, NFCALL/6/, NFGCAL/7/, NFCOV/52/, C 4 NGCOV/53/, NGCALL/30/, NITER/31/, QTR/77/, RADINC/8/, C 5 RDREQ/57/, REGD/67/, RESTOR/9/, RMAT/78/, S/62/, STEP/40/, C 6 STGLIM/11/, STLSTG/41/, SUSED/64/, SWITCH/12/, TOOBIG/2/, C 7 VNEED/4/, VSAVE/60/, W/65/, XIRC/13/, X0/43/ C/7 PARAMETER (CNVCOD=55, COVMAT=26, COVREQ=15, DIG=37, FDH=74, H=56, 1 HC=71, IERR=75, INITS=25, IPIVOT=76, IRC=29, KAGQT=33, 2 KALM=34, LMAT=42, MODE=35, MODEL=5, MXFCAL=17, 3 MXITER=18, NEXTV=47, NFCALL=6, NFGCAL=7, NFCOV=52, 4 NGCOV=53, NGCALL=30, NITER=31, QTR=77, RADINC=8, 5 RDREQ=57, REGD=67, RESTOR=9, RMAT=78, S=62, STEP=40, 6 STGLIM=11, STLSTG=41, SUSED=64, SWITCH=12, TOOBIG=2, 7 VNEED=4, VSAVE=60, W=65, XIRC=13, X0=43) C/ C C *** V SUBSCRIPT VALUES *** C C/6 C DATA COSMIN/47/, DGNORM/1/, DSTNRM/2/, F/10/, FDIF/11/, FUZZ/45/, C 1 F0/13/, GTSTEP/4/, INCFAC/23/, LMAX0/35/, LMAXS/36/, C 2 NVSAVE/9/, PHMXFC/21/, PREDUC/7/, RADFAC/16/, RADIUS/8/, C 3 RAD0/9/, RCOND/53/, RELDX/17/, SIZE/55/, STPPAR/5/, C 4 TUNER4/29/, TUNER5/30/, WSCALE/56/ C/7 PARAMETER (COSMIN=47, DGNORM=1, DSTNRM=2, F=10, FDIF=11, FUZZ=45, 1 F0=13, GTSTEP=4, INCFAC=23, LMAX0=35, LMAXS=36, 2 NVSAVE=9, PHMXFC=21, PREDUC=7, RADFAC=16, RADIUS=8, 3 RAD0=9, RCOND=53, RELDX=17, SIZE=55, STPPAR=5, 4 TUNER4=29, TUNER5=30, WSCALE=56) C/ C C C/6 C DATA HALF/0.5D+0/, NEGONE/-1.D+0/, ONE/1.D+0/, ONEP2/1.2D+0/, C 1 ZERO/0.D+0/ C/7 PARAMETER (HALF=0.5D+0, NEGONE=-1.D+0, ONE=1.D+0, ONEP2=1.2D+0, 1 ZERO=0.D+0) C/ C C+++++++++++++++++++++++++++++++ BODY ++++++++++++++++++++++++++++++++ C I = IV(1) IF (I .EQ. 1) GO TO 40 IF (I .EQ. 2) GO TO 50 C IF (I .EQ. 12 .OR. I .EQ. 13) 1 IV(VNEED) = IV(VNEED) + P*(3*P + 19)/2 + 7 CALL DPARCK(1, D, IV, LIV, LV, P, V) I = IV(1) - 2 IF (I .GT. 12) GO TO 999 GO TO (290, 290, 290, 290, 290, 290, 170, 120, 170, 10, 10, 20), I C C *** STORAGE ALLOCATION *** C 10 PP1O2 = P * (P + 1) / 2 IV(S) = IV(LMAT) + PP1O2 IV(X0) = IV(S) + PP1O2 IV(STEP) = IV(X0) + P IV(STLSTG) = IV(STEP) + P IV(DIG) = IV(STLSTG) + P IV(W) = IV(DIG) + P IV(H) = IV(W) + 4*P + 7 IV(NEXTV) = IV(H) + PP1O2 IF (IV(1) .NE. 13) GO TO 20 IV(1) = 14 GO TO 999 C C *** INITIALIZATION *** C 20 IV(NITER) = 0 IV(NFCALL) = 1 IV(NGCALL) = 1 IV(NFGCAL) = 1 IV(MODE) = -1 IV(STGLIM) = 2 IV(TOOBIG) = 0 IV(CNVCOD) = 0 IV(COVMAT) = 0 IV(NFCOV) = 0 IV(NGCOV) = 0 IV(RADINC) = 0 IV(RESTOR) = 0 IV(FDH) = 0 V(RAD0) = ZERO V(STPPAR) = ZERO V(RADIUS) = V(LMAX0) / (ONE + V(PHMXFC)) C C *** SET INITIAL MODEL AND S MATRIX *** C IV(MODEL) = 1 IF (IV(S) .LT. 0) GO TO 999 IF (IV(INITS) .GT. 1) IV(MODEL) = 2 S1 = IV(S) IF (IV(INITS) .EQ. 0 .OR. IV(INITS) .GT. 2) 1 CALL DV7SCP(P*(P+1)/2, V(S1), ZERO) IV(1) = 1 J = IV(IPIVOT) IF (J .LE. 0) GO TO 999 DO 30 I = 1, P IV(J) = I J = J + 1 30 CONTINUE GO TO 999 C C *** NEW FUNCTION VALUE *** C 40 IF (IV(MODE) .EQ. 0) GO TO 290 IF (IV(MODE) .GT. 0) GO TO 520 C IV(1) = 2 IF (IV(TOOBIG) .EQ. 0) GO TO 999 IV(1) = 63 GO TO 999 C C *** NEW GRADIENT *** C 50 IV(KALM) = -1 IV(KAGQT) = -1 IV(FDH) = 0 IF (IV(MODE) .GT. 0) GO TO 520 C C *** MAKE SURE GRADIENT COULD BE COMPUTED *** C IF (IV(TOOBIG) .EQ. 0) GO TO 60 IV(1) = 65 GO TO 999 60 IF (IV(HC) .LE. 0 .AND. IV(RMAT) .LE. 0) GO TO 610 C C *** COMPUTE D**-1 * GRADIENT *** C DIG1 = IV(DIG) K = DIG1 DO 70 I = 1, P V(K) = G(I) / D(I) K = K + 1 70 CONTINUE V(DGNORM) = DV2NRM(P, V(DIG1)) C IF (IV(CNVCOD) .NE. 0) GO TO 510 IF (IV(MODE) .EQ. 0) GO TO 440 IV(MODE) = 0 V(F0) = V(F) IF (IV(INITS) .LE. 2) GO TO 100 C C *** ARRANGE FOR FINITE-DIFFERENCE INITIAL S *** C IV(XIRC) = IV(COVREQ) IV(COVREQ) = -1 IF (IV(INITS) .GT. 3) IV(COVREQ) = 1 IV(CNVCOD) = 70 GO TO 530 C C *** COME TO NEXT STMT AFTER COMPUTING F.D. HESSIAN FOR INIT. S *** C 80 IV(CNVCOD) = 0 IV(MODE) = 0 IV(NFCOV) = 0 IV(NGCOV) = 0 IV(COVREQ) = IV(XIRC) S1 = IV(S) PP1O2 = PS * (PS + 1) / 2 HC1 = IV(HC) IF (HC1 .LE. 0) GO TO 90 CALL DV2AXY(PP1O2, V(S1), NEGONE, V(HC1), V(H1)) GO TO 100 90 RMAT1 = IV(RMAT) CALL DL7SQR(PS, V(S1), V(RMAT1)) CALL DV2AXY(PP1O2, V(S1), NEGONE, V(S1), V(H1)) 100 IV(1) = 2 C C C----------------------------- MAIN LOOP ----------------------------- C C C *** PRINT ITERATION SUMMARY, CHECK ITERATION LIMIT *** C 110 CALL DITSUM(D, G, IV, LIV, LV, P, V, X) 120 K = IV(NITER) IF (K .LT. IV(MXITER)) GO TO 130 IV(1) = 10 GO TO 999 130 IV(NITER) = K + 1 C C *** UPDATE RADIUS *** C IF (K .EQ. 0) GO TO 150 STEP1 = IV(STEP) DO 140 I = 1, P V(STEP1) = D(I) * V(STEP1) STEP1 = STEP1 + 1 140 CONTINUE STEP1 = IV(STEP) T = V(RADFAC) * DV2NRM(P, V(STEP1)) IF (V(RADFAC) .LT. ONE .OR. T .GT. V(RADIUS)) V(RADIUS) = T C C *** INITIALIZE FOR START OF NEXT ITERATION *** C 150 X01 = IV(X0) V(F0) = V(F) IV(IRC) = 4 IV(H) = -IABS(IV(H)) IV(SUSED) = IV(MODEL) C C *** COPY X TO X0 *** C CALL DV7CPY(P, V(X01), X) C C *** CHECK STOPX AND FUNCTION EVALUATION LIMIT *** C 160 IF (.NOT. STOPX(DUMMY)) GO TO 180 IV(1) = 11 GO TO 190 C C *** COME HERE WHEN RESTARTING AFTER FUNC. EVAL. LIMIT OR STOPX. C 170 IF (V(F) .GE. V(F0)) GO TO 180 V(RADFAC) = ONE K = IV(NITER) GO TO 130 C 180 IF (IV(NFCALL) .LT. IV(MXFCAL) + IV(NFCOV)) GO TO 200 IV(1) = 9 190 IF (V(F) .GE. V(F0)) GO TO 999 C C *** IN CASE OF STOPX OR FUNCTION EVALUATION LIMIT WITH C *** IMPROVED V(F), EVALUATE THE GRADIENT AT X. C IV(CNVCOD) = IV(1) GO TO 430 C C. . . . . . . . . . . . . COMPUTE CANDIDATE STEP . . . . . . . . . . C 200 STEP1 = IV(STEP) W1 = IV(W) H1 = IV(H) T1 = ONE IF (IV(MODEL) .EQ. 2) GO TO 210 T1 = ZERO C C *** COMPUTE LEVENBERG-MARQUARDT STEP IF POSSIBLE... C RMAT1 = IV(RMAT) IF (RMAT1 .LE. 0) GO TO 210 QTR1 = IV(QTR) IF (QTR1 .LE. 0) GO TO 210 IPIV1 = IV(IPIVOT) CALL DL7MST(D, G, IV(IERR), IV(IPIV1), IV(KALM), P, V(QTR1), 1 V(RMAT1), V(STEP1), V, V(W1)) C *** H IS STORED IN THE END OF W AND HAS JUST BEEN OVERWRITTEN, C *** SO WE MARK IT INVALID... IV(H) = -IABS(H1) C *** EVEN IF H WERE STORED ELSEWHERE, IT WOULD BE NECESSARY TO C *** MARK INVALID THE INFORMATION DG7QTS MAY HAVE STORED IN V... IV(KAGQT) = -1 GO TO 260 C 210 IF (H1 .GT. 0) GO TO 250 C C *** SET H TO D**-1 * (HC + T1*S) * D**-1. *** C H1 = -H1 IV(H) = H1 IV(FDH) = 0 J = IV(HC) IF (J .GT. 0) GO TO 220 J = H1 RMAT1 = IV(RMAT) CALL DL7SQR(P, V(H1), V(RMAT1)) 220 S1 = IV(S) DO 240 I = 1, P T = ONE / D(I) DO 230 K = 1, I V(H1) = T * (V(J) + T1*V(S1)) / D(K) J = J + 1 H1 = H1 + 1 S1 = S1 + 1 230 CONTINUE 240 CONTINUE H1 = IV(H) IV(KAGQT) = -1 C C *** COMPUTE ACTUAL GOLDFELD-QUANDT-TROTTER STEP *** C 250 DIG1 = IV(DIG) LMAT1 = IV(LMAT) CALL DG7QTS(D, V(DIG1), V(H1), IV(KAGQT), V(LMAT1), P, V(STEP1), 1 V, V(W1)) IF (IV(KALM) .GT. 0) IV(KALM) = 0 C 260 IF (IV(IRC) .NE. 6) GO TO 270 IF (IV(RESTOR) .NE. 2) GO TO 290 RSTRST = 2 GO TO 300 C C *** CHECK WHETHER EVALUATING F(X0 + STEP) LOOKS WORTHWHILE *** C 270 IV(TOOBIG) = 0 IF (V(DSTNRM) .LE. ZERO) GO TO 290 IF (IV(IRC) .NE. 5) GO TO 280 IF (V(RADFAC) .LE. ONE) GO TO 280 IF (V(PREDUC) .GT. ONEP2 * V(FDIF)) GO TO 280 STEP1 = IV(STEP) X01 = IV(X0) CALL DV2AXY(P, V(STEP1), NEGONE, V(X01), X) IF (IV(RESTOR) .NE. 2) GO TO 290 RSTRST = 0 GO TO 300 C C *** COMPUTE F(X0 + STEP) *** C 280 X01 = IV(X0) STEP1 = IV(STEP) CALL DV2AXY(P, X, ONE, V(STEP1), V(X01)) IV(NFCALL) = IV(NFCALL) + 1 IV(1) = 1 GO TO 999 C C. . . . . . . . . . . . . ASSESS CANDIDATE STEP . . . . . . . . . . . C 290 RSTRST = 3 300 X01 = IV(X0) V(RELDX) = DRLDST(P, D, X, V(X01)) CALL DA7SST(IV, LIV, LV, V) STEP1 = IV(STEP) LSTGST = IV(STLSTG) I = IV(RESTOR) + 1 GO TO (340, 310, 320, 330), I 310 CALL DV7CPY(P, X, V(X01)) GO TO 340 320 CALL DV7CPY(P, V(LSTGST), V(STEP1)) GO TO 340 330 CALL DV7CPY(P, V(STEP1), V(LSTGST)) CALL DV2AXY(P, X, ONE, V(STEP1), V(X01)) V(RELDX) = DRLDST(P, D, X, V(X01)) IV(RESTOR) = RSTRST C C *** IF NECESSARY, SWITCH MODELS *** C 340 IF (IV(SWITCH) .EQ. 0) GO TO 350 IV(H) = -IABS(IV(H)) IV(SUSED) = IV(SUSED) + 2 L = IV(VSAVE) CALL DV7CPY(NVSAVE, V, V(L)) 350 L = IV(IRC) - 4 STPMOD = IV(MODEL) IF (L .GT. 0) GO TO (370,380,390,390,390,390,390,390,500,440), L C C *** DECIDE WHETHER TO CHANGE MODELS *** C E = V(PREDUC) - V(FDIF) S1 = IV(S) CALL DS7LVM(PS, Y, V(S1), V(STEP1)) STTSST = HALF * DD7TPR(PS, V(STEP1), Y) IF (IV(MODEL) .EQ. 1) STTSST = -STTSST IF (DABS(E + STTSST) * V(FUZZ) .GE. DABS(E)) GO TO 360 C C *** SWITCH MODELS *** C IV(MODEL) = 3 - IV(MODEL) IF (-2 .LT. L) GO TO 400 IV(H) = -IABS(IV(H)) IV(SUSED) = IV(SUSED) + 2 L = IV(VSAVE) CALL DV7CPY(NVSAVE, V(L), V) GO TO 160 C 360 IF (-3 .LT. L) GO TO 400 C C *** RECOMPUTE STEP WITH NEW RADIUS *** C 370 V(RADIUS) = V(RADFAC) * V(DSTNRM) GO TO 160 C C *** COMPUTE STEP OF LENGTH V(LMAXS) FOR SINGULAR CONVERGENCE TEST C 380 V(RADIUS) = V(LMAXS) GO TO 200 C C *** CONVERGENCE OR FALSE CONVERGENCE *** C 390 IV(CNVCOD) = L IF (V(F) .GE. V(F0)) GO TO 510 IF (IV(XIRC) .EQ. 14) GO TO 510 IV(XIRC) = 14 C C. . . . . . . . . . . . PROCESS ACCEPTABLE STEP . . . . . . . . . . . C 400 IV(COVMAT) = 0 IV(REGD) = 0 C C *** SEE WHETHER TO SET V(RADFAC) BY GRADIENT TESTS *** C IF (IV(IRC) .NE. 3) GO TO 430 STEP1 = IV(STEP) TEMP1 = IV(STLSTG) TEMP2 = IV(W) C C *** SET TEMP1 = HESSIAN * STEP FOR USE IN GRADIENT TESTS *** C HC1 = IV(HC) IF (HC1 .LE. 0) GO TO 410 CALL DS7LVM(P, V(TEMP1), V(HC1), V(STEP1)) GO TO 420 410 RMAT1 = IV(RMAT) CALL DL7TVM(P, V(TEMP1), V(RMAT1), V(STEP1)) CALL DL7VML(P, V(TEMP1), V(RMAT1), V(TEMP1)) C 420 IF (STPMOD .EQ. 1) GO TO 430 S1 = IV(S) CALL DS7LVM(PS, V(TEMP2), V(S1), V(STEP1)) CALL DV2AXY(PS, V(TEMP1), ONE, V(TEMP2), V(TEMP1)) C C *** SAVE OLD GRADIENT AND COMPUTE NEW ONE *** C 430 IV(NGCALL) = IV(NGCALL) + 1 G01 = IV(W) CALL DV7CPY(P, V(G01), G) IV(1) = 2 IV(TOOBIG) = 0 GO TO 999 C C *** INITIALIZATIONS -- G0 = G - G0, ETC. *** C 440 G01 = IV(W) CALL DV2AXY(P, V(G01), NEGONE, V(G01), G) STEP1 = IV(STEP) TEMP1 = IV(STLSTG) TEMP2 = IV(W) IF (IV(IRC) .NE. 3) GO TO 470 C C *** SET V(RADFAC) BY GRADIENT TESTS *** C C *** SET TEMP1 = D**-1 * (HESSIAN * STEP + (G(X0) - G(X))) *** C K = TEMP1 L = G01 DO 450 I = 1, P V(K) = (V(K) - V(L)) / D(I) K = K + 1 L = L + 1 450 CONTINUE C C *** DO GRADIENT TESTS *** C IF (DV2NRM(P, V(TEMP1)) .LE. V(DGNORM) * V(TUNER4)) GO TO 460 IF (DD7TPR(P, G, V(STEP1)) 1 .GE. V(GTSTEP) * V(TUNER5)) GO TO 470 460 V(RADFAC) = V(INCFAC) C C *** COMPUTE Y VECTOR NEEDED FOR UPDATING S *** C 470 CALL DV2AXY(PS, Y, NEGONE, Y, G) C C *** DETERMINE SIZING FACTOR V(SIZE) *** C C *** SET TEMP1 = S * STEP *** S1 = IV(S) CALL DS7LVM(PS, V(TEMP1), V(S1), V(STEP1)) C T1 = DABS(DD7TPR(PS, V(STEP1), V(TEMP1))) T = DABS(DD7TPR(PS, V(STEP1), Y)) V(SIZE) = ONE IF (T .LT. T1) V(SIZE) = T / T1 C C *** SET G0 TO WCHMTD CHOICE OF FLETCHER AND AL-BAALI *** C HC1 = IV(HC) IF (HC1 .LE. 0) GO TO 480 CALL DS7LVM(PS, V(G01), V(HC1), V(STEP1)) GO TO 490 C 480 RMAT1 = IV(RMAT) CALL DL7TVM(PS, V(G01), V(RMAT1), V(STEP1)) CALL DL7VML(PS, V(G01), V(RMAT1), V(G01)) C 490 CALL DV2AXY(PS, V(G01), ONE, Y, V(G01)) C C *** UPDATE S *** C CALL DS7LUP(V(S1), V(COSMIN), PS, V(SIZE), V(STEP1), V(TEMP1), 1 V(TEMP2), V(G01), V(WSCALE), Y) IV(1) = 2 GO TO 110 C C. . . . . . . . . . . . . . MISC. DETAILS . . . . . . . . . . . . . . C C *** BAD PARAMETERS TO ASSESS *** C 500 IV(1) = 64 GO TO 999 C C C *** CONVERGENCE OBTAINED -- SEE WHETHER TO COMPUTE COVARIANCE *** C 510 IF (IV(RDREQ) .EQ. 0) GO TO 600 IF (IV(FDH) .NE. 0) GO TO 600 IF (IV(CNVCOD) .GE. 7) GO TO 600 IF (IV(REGD) .GT. 0) GO TO 600 IF (IV(COVMAT) .GT. 0) GO TO 600 IF (IABS(IV(COVREQ)) .GE. 3) GO TO 560 IF (IV(RESTOR) .EQ. 0) IV(RESTOR) = 2 GO TO 530 C C *** COMPUTE FINITE-DIFFERENCE HESSIAN FOR COMPUTING COVARIANCE *** C 520 IV(RESTOR) = 0 530 CALL DF7HES(D, G, I, IV, LIV, LV, P, V, X) GO TO (540, 550, 580), I 540 IV(NFCOV) = IV(NFCOV) + 1 IV(NFCALL) = IV(NFCALL) + 1 IV(1) = 1 GO TO 999 C 550 IV(NGCOV) = IV(NGCOV) + 1 IV(NGCALL) = IV(NGCALL) + 1 IV(NFGCAL) = IV(NFCALL) + IV(NGCOV) IV(1) = 2 GO TO 999 C 560 H1 = IABS(IV(H)) IV(H) = -H1 PP1O2 = P * (P + 1) / 2 RMAT1 = IV(RMAT) IF (RMAT1 .LE. 0) GO TO 570 LMAT1 = IV(LMAT) CALL DV7CPY(PP1O2, V(LMAT1), V(RMAT1)) V(RCOND) = ZERO GO TO 590 570 HC1 = IV(HC) IV(FDH) = H1 CALL DV7CPY(P*(P+1)/2, V(H1), V(HC1)) C C *** COMPUTE CHOLESKY FACTOR OF FINITE-DIFFERENCE HESSIAN C *** FOR USE IN CALLER*S COVARIANCE CALCULATION... C 580 LMAT1 = IV(LMAT) H1 = IV(FDH) IF (H1 .LE. 0) GO TO 600 IF (IV(CNVCOD) .EQ. 70) GO TO 80 CALL DL7SRT(1, P, V(LMAT1), V(H1), I) IV(FDH) = -1 V(RCOND) = ZERO IF (I .NE. 0) GO TO 600 C 590 IV(FDH) = -1 STEP1 = IV(STEP) T = DL7SVN(P, V(LMAT1), V(STEP1), V(STEP1)) IF (T .LE. ZERO) GO TO 600 T = T / DL7SVX(P, V(LMAT1), V(STEP1), V(STEP1)) IF (T .GT. DR7MDC(4)) IV(FDH) = H1 V(RCOND) = T C 600 IV(MODE) = 0 IV(1) = IV(CNVCOD) IV(CNVCOD) = 0 GO TO 999 C C *** SPECIAL RETURN FOR MISSING HESSIAN INFORMATION -- BOTH C *** IV(HC) .LE. 0 AND IV(RMAT) .LE. 0 C 610 IV(1) = 1400 C 999 RETURN C C *** LAST LINE OF DG7LIT FOLLOWS *** END .