:name square gyrobicupola (J29) :number 73 :symbol @gQ sub 4 @ :sfaces 18 8{3} 10{4} :svertices 16 8(@3@.@4@.@3@.@4@) 8(@3@.@4 sup 3@) :net 18 4 4 9 10 6 5 4 10 9 14 15 3 10 15 12 4 6 10 11 7 3 6 7 2 4 5 6 1 0 3 5 0 3 4 9 5 4 8 3 9 8 13 4 21 18 22 25 4 18 21 17 15 3 18 15 14 4 22 18 16 20 3 22 20 24 4 25 22 26 28 3 25 28 29 4 21 25 27 23 3 21 23 19 :solid 18 4 4 37 34 40 42 4 34 37 32 30 3 34 30 31 4 40 34 31 36 3 40 36 43 4 42 40 43 45 3 42 45 44 4 37 42 44 38 3 37 38 32 4 35 33 39 41 4 33 35 31 30 3 33 30 32 4 39 33 32 38 3 39 38 44 4 41 39 44 45 3 41 45 43 4 35 41 43 36 3 35 36 31 :hinges 17 0 0 1 0 2.3561944901923449 1 3 2 0 2.5261129449194059 0 1 3 0 2.3561944901923449 3 3 4 0 2.5261129449194059 0 2 5 0 2.3561944901923449 5 3 6 0 2.5261129449194059 0 3 7 0 2.3561944901923449 7 3 8 0 2.5261129449194059 9 0 10 0 2.3561944901923449 10 3 11 0 2.5261129449194059 9 1 12 0 2.3561944901923449 12 3 13 0 2.5261129449194059 9 2 14 0 2.3561944901923449 14 3 15 0 2.5261129449194059 9 3 16 0 2.3561944901923449 16 3 17 0 2.5261129449194059 1 2 11 1 1.7407147815219576 :dih 3 16 3 4 2.5261129449194059 8 3 4 1.7407147815219576 8 4 4 2.3561944901923449 :vertices 46 30 -2.5[-5/2] -.5[-1/2] 0[0] -2.5[-5/2] .5[1/2] 0[0] -2.36602540378444[(-3/2+(-1/2)*sqrt(3))] 1[1] 0[0] -2[-2] -1.36602540378444[(-1/2+(-1/2)*sqrt(3))] 0[0] -1.5[-3/2] -1.5[-3/2] 0[0] -1.5[-3/2] -.5[-1/2] 0[0] -1.5[-3/2] .5[1/2] 0[0] -1.5[-3/2] 1.5[3/2] 0[0] -.5[-1/2] -1.5[-3/2] 0[0] -.5[-1/2] -.5[-1/2] 0[0] -.5[-1/2] .5[1/2] 0[0] -.5[-1/2] 1.5[3/2] 0[0] 0[0] 1.36602540378444[(1/2+(1/2)*sqrt(3))] 0[0] .366025403784439[(-1/2+(1/2)*sqrt(3))] -1[-1] 0[0] .5[1/2] -.5[-1/2] 0[0] .5[1/2] .5[1/2] 0[0] .866025403784439[(1/2)*sqrt(3)] -.866025403784439[(-1/2)*sqrt(3)] 0[0] 1[1] 1.36602540378444[(1/2+(1/2)*sqrt(3))] 0[0] 1.36602540378444[(1/2+(1/2)*sqrt(3))] 0[0] 0[0] 1.36602540378444[(1/2+(1/2)*sqrt(3))] 1.73205080756888[sqrt(3)] 0[0] 1.73205080756888[sqrt(3)] -1.36602540378444[(-1/2+(-1/2)*sqrt(3))] 0[0] 1.86602540378444[(1+(1/2)*sqrt(3))] .866025403784439[(1/2)*sqrt(3)] 0[0] 2.23205080756888[(1/2+sqrt(3))] -.5[-1/2] 0[0] 2.36602540378444[(3/2+(1/2)*sqrt(3))] 1.73205080756888[sqrt(3)] 0[0] 2.73205080756888[(1+sqrt(3))] -1.36602540378444[(-1/2+(-1/2)*sqrt(3))] 0[0] 2.73205080756888[(1+sqrt(3))] .366025403784439[(-1/2+(1/2)*sqrt(3))] 0[0] 3.09807621135332[(1/2+(3/2)*sqrt(3))] -1[-1] 0[0] 3.23205080756888[(3/2+sqrt(3))] 1.23205080756888[(-1/2+sqrt(3))] 0[0] 3.59807621135332[(1+(3/2)*sqrt(3))] -.133974596215561[(-1+(1/2)*sqrt(3))] 0[0] 3.59807621135332[(1+(3/2)*sqrt(3))] .866025403784439[(1/2)*sqrt(3)] 0[0] .11493262492746052 1.0178730107877262 -6.2967956730455309 .39645959185177711 1.9431397317519202 -6.0425830416312639 .58648277176699516 .14540554813663314 -6.4250180799437691 .68240007564706679 .64369585195899641 -5.5633298277707469 .83304822187051819 1.4821841415243687 -6.8151827516857849 .9639270425713832 1.5689625729231893 -5.3091171963564798 1.266148993489442 2.3791970147008706 -5.8112944974568923 1.3045983687100528 .60971667887327569 -6.9434051585840231 1.5348823516908072 -.16318304930959193 -6.3521393153651113 1.6307996555708789 .33510725451277174 -5.490451063192089 1.702737623508183 1.9182414244733193 -6.5838942075114137 1.9123266224951953 1.2603739754769648 -5.2362384317778216 2.1742877703477176 1.0457739618222263 -6.7121166144096517 2.214548573413254 2.0706084172546455 -5.7384157328782345 2.4045717533284722 .27287423363935858 -6.1208507711907399 2.6860987202527887 1.198140954603552 -5.8666381397764724 :EOF .