:name tridiminished icosahedron (J63) :number 107 :symbol @Y sub 5 @ :sfaces 8 5{3} 3{5} :svertices 9 6(@3@.@5 sup 2@) 3(@3 sup 3@.@5@) :net 8 5 5 3 5 10 11 6 5 7 6 11 14 12 3 0 1 3 3 1 5 3 3 3 6 2 3 7 12 8 5 10 5 4 9 13 3 11 10 15 :solid 8 5 5 22 24 23 21 18 5 16 18 21 19 17 3 16 20 22 3 20 24 22 3 22 18 16 3 16 17 20 5 23 24 20 17 19 3 21 23 19 :hinges 7 2 1 3 2 2.4118649973628269 3 1 0 0 1.7595068575784587 0 4 4 0 1.7595068575784587 0 3 1 1 1.1071487177940905 5 0 1 4 1.7595068575784587 6 0 0 1 1.1071487177940905 7 0 0 2 1.7595068575784587 :dih 3 3 3 3 2.4118649973628269 9 3 5 1.7595068575784587 3 5 5 1.1071487177940905 :vertices 25 16 -1.84517270372031[((-1/8)*sqrt(3)+(-1/8)*sqrt(15))+(-1/8+(1/40)*sqrt(5))*sqrt(10+2*sqrt(5))-3/8*sqrt(10-2*sqrt(5))] -.104528463267653[(1/8+(1/8)*sqrt(5))+(-1/8)*sqrt(3)*sqrt(10-2*sqrt(5))] 0[0] -1.25738745142784[((-1/8)*sqrt(3)+(-1/8)*sqrt(15))+(-1/8+(1/40)*sqrt(5))*sqrt(10+2*sqrt(5))-1/8*sqrt(10-2*sqrt(5))] -.913545457642601[(-1/8+(-1/8)*sqrt(5))+(-1/8)*sqrt(3)*sqrt(10-2*sqrt(5))] 0[0] -1.25738745142784[((-1/8)*sqrt(3)+(-1/8)*sqrt(15))+(-1/10)*sqrt(5)*sqrt(10+2*sqrt(5))+1/8*sqrt(10-2*sqrt(5))] .913545457642601[(1/8+(1/8)*sqrt(5))+(1/8)*sqrt(3)*sqrt(10-2*sqrt(5))] 0[0] -.85065080835204001[(-1/10)*sqrt(5)*sqrt(10+2*sqrt(5))] 0[0] 0[0] -.262865556059567[(1/40)*sqrt(5)*sqrt(10+2*sqrt(5))+(-1/16+(-1/16)*sqrt(5))*sqrt(10-2*sqrt(5))] -1.80901699437495[(-5/4+(-1/4)*sqrt(5))] 0[0] -.262865556059567[(-1/8+(1/40)*sqrt(5))*sqrt(10+2*sqrt(5))] -.80901699437494701[(-1/4+(-1/4)*sqrt(5))] 0[0] -.262865556059567[(-1/8+(1/40)*sqrt(5))*sqrt(10+2*sqrt(5))] .80901699437494701[(1/4+(1/4)*sqrt(5))] 0[0] -.262865556059567[(-1/4+(1/40)*sqrt(5))*sqrt(10+2*sqrt(5))+(1/16+(1/16)*sqrt(5))*sqrt(10-2*sqrt(5))] 1.80901699437495[(5/4+(1/4)*sqrt(5))] 0[0] -.0549538652418076[((1/8)*sqrt(3)+(-1/8)*sqrt(15))+(-1/4+(1/40)*sqrt(5))*sqrt(10+2*sqrt(5))+(1/8+(1/8)*sqrt(5))*sqrt(10-2*sqrt(5))] 2.78716459510875[(9/8+(3/8)*sqrt(5))+((1/16)*sqrt(3)+(1/16)*sqrt(15))*sqrt(10-2*sqrt(5))] 0[0] .688190960235587[(1/40)*sqrt(5)*sqrt(10+2*sqrt(5))+(1/16+(1/16)*sqrt(5))*sqrt(10-2*sqrt(5))] -2.11803398874989[(-1+(-1/2)*sqrt(5))] 0[0] .688190960235587[(1/8+(1/40)*sqrt(5))*sqrt(10+2*sqrt(5))] -.5[-1/2] 0[0] .688190960235587[(1/8+(1/40)*sqrt(5))*sqrt(10+2*sqrt(5))] .5[1/2] 0[0] .688190960235587[(-1/8+(1/40)*sqrt(5))*sqrt(10+2*sqrt(5))+(1/8+(1/8)*sqrt(5))*sqrt(10-2*sqrt(5))] 2.11803398874989[(1+(1/2)*sqrt(5))] 0[0] 1.27597621252806[(-1/16+(7/80)*sqrt(5))*sqrt(10+2*sqrt(5))+(3/16+(1/16)*sqrt(5))*sqrt(10-2*sqrt(5))] -1.30901699437495[(-3/4+(-1/4)*sqrt(5))] 0[0] 1.27597621252806[(-1/16+(7/80)*sqrt(5))*sqrt(10+2*sqrt(5))+(3/16+(1/16)*sqrt(5))*sqrt(10-2*sqrt(5))] 1.30901699437495[(3/4+(1/4)*sqrt(5))] 0[0] 1.55421636402003[(1/2)*sqrt(3)+(1/8+(1/40)*sqrt(5))*sqrt(10+2*sqrt(5))] 0[0] 0[0] -4.2893267168959688 3.7842861484218058 -.78550364488583906 -4.1757484218971558 3.2329389177036625 .041004795533613914 -3.8206885912822139 3.3172467941170278 -1.5353386592401999 -3.6369150495898793 2.4251482352119478 -.19801991065285011 -3.60355270247874 4.0401113880229261 -.10413190498675644 -3.417476006230061 2.4772533683547309 -1.1722537436465033 -3.3841136591189229 4.092216521165709 -1.0783657379804066 -2.7317019918128312 2.7330786079558518 -.49088200374741842 -2.7110829273536763 3.7311807269717268 -.43285602510982822 :EOF .