var searchData= [ ['b_0',['Linear solve, AX = B',['../dd/d9b/group__solve__top.html',1,'']]], ['b_20_5f2_1',['Standard least squares, min || Ax - b ||_2',['../d4/ddf/group__gels__driver__grp.html',1,'']]], ['back_20multiplying_20factors_20step_20in_20gelsd_2',['lals0: back multiplying factors, step in gelsd',['../d2/da4/group__lals0.html',1,'']]], ['back_20transform_20eigvec_3',['back transform eigvec',['../de/dfa/group__gebak.html',1,'gebak: back-transform eigvec'],['../dc/d60/group__ggbak.html',1,'ggbak: back-transform eigvec']]], ['backward_20error_4',['la_lin_berr: backward error',['../db/d65/group__la__lin__berr.html',1,'']]], ['balance_20matrix_5',['balance matrix',['../df/df3/group__gebal.html',1,'gebal: balance matrix'],['../d7/d03/group__ggbal.html',1,'ggbal: balance matrix']]], ['band_201st_20stage_6',['{he,sy}trd_he2hb: full to band (1st stage)',['../dc/d0e/group__hetrd__he2hb.html',1,'']]], ['band_20to_20bidiagonal_7',['gbbrd: band to bidiagonal',['../dd/d1a/group__gbbrd.html',1,'']]], ['band_20to_20tridiagonal_202nd_20stage_8',['band to tridiagonal 2nd stage',['../d9/dfb/group__hb2st__kernels.html',1,'{hb,sb}2st_kernels: band to tridiagonal (2nd stage)'],['../d2/ded/group__hetrd__hb2st.html',1,'{he,sy}trd_hb2st: band to tridiagonal (2nd stage)']]], ['banded_9',['banded',['../d2/d41/group__la__gbamv.html',1,'la_gbamv: matrix-vector multiply |A| * |x|, general banded'],['../d7/daf/group__langb.html',1,'langb: general matrix, banded'],['../d2/d1d/group__lantb.html',1,'lantb: triangular matrix, banded'],['../de/dc2/group__lanhb.html',1,'lan{hb,sb}: Hermitian/symmetric matrix, banded'],['../db/d99/group__hbgst.html',1,'{hb,sb}gst: reduction to standard form, banded']]], ['banded_202nd_20stage_20mdash_10',['— banded, 2nd-stage —',['../d9/d31/group__hbev__driver2.html',1,'']]], ['banded_20mdash_11',['banded mdash',['../d3/dc6/group__gbsv__driver.html',1,'— banded —'],['../da/de5/group__gbsv__comp.html',1,'— banded —'],['../db/d4e/group__pbsv__driver.html',1,'— banded —'],['../d8/dbb/group__pbsv__comp.html',1,'— banded —'],['../d5/d4f/group__tbsv__comp.html',1,'— banded —'],['../d5/d41/group__hbev__driver.html',1,'— banded —'],['../d8/dee/group__hbgv__driver.html',1,'— banded —'],['../d1/d96/group__hbev__comp.html',1,'— banded —'],['../d3/d9c/group__blas2__banded.html',1,'— banded —']]], ['banded_20q_20step_20in_20gghd3_12',['{un,or}m22: multiply by banded Q, step in gghd3',['../d1/d74/group__unm22.html',1,'']]], ['bbcsd_3a_13',['bbcsd: ??',['../dc/d7c/group__bbcsd.html',1,'']]], ['bdb1_3a_20step_20in_20uncsd2by1_14',['{un,or}bdb1: step in uncsd2by1',['../df/da6/group__unbdb1.html',1,'']]], ['bdb2_3a_20step_20in_20uncsd2by1_15',['{un,or}bdb2: step in uncsd2by1',['../dc/d06/group__unbdb2.html',1,'']]], ['bdb3_3a_20step_20in_20uncsd2by1_16',['{un,or}bdb3: step in uncsd2by1',['../d0/d6f/group__unbdb3.html',1,'']]], ['bdb4_3a_20step_20in_20uncsd2by1_17',['{un,or}bdb4: step in uncsd2by1',['../da/d07/group__unbdb4.html',1,'']]], ['bdb5_3a_20step_20in_20uncsd2by1_18',['{un,or}bdb5: step in uncsd2by1',['../db/d1b/group__unbdb5.html',1,'']]], ['bdb6_3a_20step_20in_20uncsd2by1_19',['{un,or}bdb6: step in uncsd2by1',['../da/de1/group__unbdb6.html',1,'']]], ['bdb_3a_20bidiagonalize_20partitioned_20unitary_20matrix_20step_20in_20uncsd_20',['{un,or}bdb: bidiagonalize partitioned unitary matrix, step in uncsd',['../da/da9/group__unbdb.html',1,'']]], ['bdsdc_3a_20bidiagonal_20svd_20divide_20and_20conquer_21',['bdsdc: bidiagonal SVD, divide and conquer',['../d2/d37/group__bdsdc.html',1,'']]], ['bdsqr_22',['lasdq: D&C step: leaf using bdsqr',['../d9/d97/group__lasdq.html',1,'']]], ['bdsqr_3a_20bidiagonal_20svd_20qr_20iteration_20dqds_23',['bdsqr: bidiagonal SVD, QR iteration (dqds)',['../d6/d51/group__bdsqr.html',1,'']]], ['bdsvdx_3a_20bidiagonal_20svd_20bisection_24',['bdsvdx: bidiagonal SVD, bisection',['../dc/d73/group__bdsvdx.html',1,'']]], ['beta_20≥_200_25',['larfgp: generate Householder reflector, beta ≥ 0',['../dc/d82/group__larfgp.html',1,'']]], ['bidiag_20d_20c_20routines_26',['bidiag D&C routines',['../d0/d99/group__lasd__comp__grp.html',1,'']]], ['bidiag_20qr_20iteration_20routines_27',['bidiag QR iteration routines',['../d9/dd0/group__lasq__comp__grp.html',1,'']]], ['bidiag_20svd_28',['lartgs: generate plane rotation for bidiag SVD',['../d7/d3a/group__lartgs.html',1,'']]], ['bidiagonal_29',['bidiagonal',['../dd/d1a/group__gbbrd.html',1,'gbbrd: band to bidiagonal'],['../dc/d1c/group__gebrd.html',1,'gebrd: reduction to bidiagonal']]], ['bidiagonal_20level_202_30',['gebd2: reduction to bidiagonal, level 2',['../d9/d03/group__gebd2.html',1,'']]], ['bidiagonal_20mdash_31',['— bidiagonal —',['../dd/d6d/group__bdsvd__driver.html',1,'']]], ['bidiagonal_20svd_20bisection_32',['bdsvdx: bidiagonal SVD, bisection',['../dc/d73/group__bdsvdx.html',1,'']]], ['bidiagonal_20svd_20divide_20and_20conquer_33',['bdsdc: bidiagonal SVD, divide and conquer',['../d2/d37/group__bdsdc.html',1,'']]], ['bidiagonal_20svd_20qr_20iteration_20dqds_34',['bdsqr: bidiagonal SVD, QR iteration (dqds)',['../d6/d51/group__bdsqr.html',1,'']]], ['bidiagonalize_20partitioned_20unitary_20matrix_20step_20in_20uncsd_35',['{un,or}bdb: bidiagonalize partitioned unitary matrix, step in uncsd',['../da/da9/group__unbdb.html',1,'']]], ['bisection_36',['bisection',['../dc/d73/group__bdsvdx.html',1,'bdsvdx: bidiagonal SVD, bisection'],['../dc/d4a/group__gesvdx.html',1,'gesvdx: SVD, bisection'],['../d1/d75/group__stevx.html',1,'stevx: eig, bisection'],['../d6/d28/group__hbevx.html',1,'{hb,sb}evx: eig, bisection'],['../d3/dea/group__hbevx__2stage.html',1,'{hb,sb}evx_2stage: eig, bisection'],['../d3/de5/group__hbgvx.html',1,'{hb,sb}gvx: eig, bisection'],['../d4/de0/group__heevx.html',1,'{he,sy}evx: eig, bisection'],['../d3/d5e/group__heevx__2stage.html',1,'{he,sy}evx_2stage: eig, bisection'],['../db/de3/group__hegvx.html',1,'{he,sy}gvx: eig, bisection'],['../d5/dba/group__hpevx.html',1,'{hp,sp}evx: eig, bisection'],['../d5/d8a/group__hpgvx.html',1,'{hp,sp}gvx: eig, bisection']]], ['bisection_20routines_37',['tridiag bisection routines',['../d3/d27/group__stev__comp__grp.html',1,'']]], ['bisection_20see_20stemr_38',['stegr: eig, bisection, see stemr',['../d3/dbe/group__stegr.html',1,'']]], ['blas_39',['BLAS',['../de/d6a/group__blas__top.html',1,'']]], ['blas_20like_40',['BLAS-like',['../d5/d91/group__blas__like__top.html',1,'']]], ['blas_20like_20matrix_20matrix_20ops_41',['Level 3 BLAS-like matrix-matrix ops',['../df/d9a/group__blas3__like__grp.html',1,'']]], ['blas_20like_20matrix_20vector_20ops_42',['Level 2 BLAS-like matrix-vector ops',['../d7/df0/group__blas2__like__grp.html',1,'']]], ['blas_20like_20vector_20ops_43',['Level 1 BLAS-like vector ops',['../d5/dde/group__blas1__like__grp.html',1,'']]], ['blas_20rot_44',['BLAS rot',['../da/dd3/group__lartg.html',1,'lartg: generate plane rotation, more accurate than BLAS rot'],['../d6/db2/group__lartgp.html',1,'lartgp: generate plane rotation, more accurate than BLAS rot']]], ['blas_3a_20matrix_20matrix_20ops_45',['Level 3 BLAS: matrix-matrix ops',['../d0/d9b/group__blas3__grp.html',1,'']]], ['blas_3a_20matrix_20vector_20ops_46',['Level 2 BLAS: matrix-vector ops',['../d5/d37/group__blas2__grp.html',1,'']]], ['blas_3a_20vector_20ops_47',['Level 1 BLAS: vector ops',['../d4/d28/group__blas1__grp.html',1,'']]], ['blast_20const_48',['BLAST const',['../d9/dcf/group__iladiag.html',1,'iladiag: diag string to BLAST const'],['../d4/da5/group__ilaprec.html',1,'ilaprec: precision string to BLAST const'],['../d2/d7a/group__ilatrans.html',1,'ilatrans: trans string to BLAST const'],['../d1/d8e/group__ilauplo.html',1,'ilauplo: uplo string to BLAST const']]], ['blast_20const_20to_20string_49',['la_transtype: BLAST const to string',['../d3/d34/group__la__transtype.html',1,'']]], ['blast_20constants_20mdash_50',['— BLAST constants —',['../de/d40/group__blast__aux.html',1,'']]], ['block_20householder_20reflector_51',['larfb: apply block Householder reflector',['../df/d9a/group__larfb.html',1,'']]], ['block_20reflector_52',['larzb: apply block reflector',['../d5/d78/group__larzb.html',1,'']]], ['blocked_53',['trevc3: eigenvectors of triangular Schur form, blocked',['../d2/d98/group__trevc3.html',1,'']]], ['blocked_202_20stage_54',['{he,sy}sv_aa_2stage: Aasen, blocked 2-stage',['../d3/dcb/group__hesv__aa__2stage.html',1,'']]], ['blocked_202_20stage_20mdash_55',['— full, Aasen, blocked 2-stage —',['../d2/d22/group__hesv__comp__aasen2.html',1,'']]], ['bvλ_20etc_56',['Generalized eig driver, AV = BVΛ, etc.',['../d2/dae/group__hegv__driver__grp.html',1,'']]], ['by_20banded_20q_20step_20in_20gghd3_57',['{un,or}m22: multiply by banded Q, step in gghd3',['../d1/d74/group__unm22.html',1,'']]], ['by_20hessenberg_20inverse_20iteration_58',['laein: eigvec by Hessenberg inverse iteration',['../db/dbc/group__laein.html',1,'']]], ['by_20q_20from_20gehrd_59',['{un,or}mhr: multiply by Q from gehrd',['../d7/db9/group__unmhr.html',1,'']]], ['by_20q_20from_20gelq_60',['gemlq: multiply by Q from gelq',['../db/d05/group__gemlq.html',1,'']]], ['by_20q_20from_20gelqf_61',['{un,or}mlq: multiply by Q from gelqf',['../d7/d19/group__unmlq.html',1,'']]], ['by_20q_20from_20gelqt_62',['gemlqt: multiply by Q from gelqt',['../de/d87/group__gemlqt.html',1,'']]], ['by_20q_20from_20geqlf_63',['{un,or}mql: multiply by Q from geqlf',['../dd/daa/group__unmql.html',1,'']]], ['by_20q_20from_20geqr_64',['gemqr: multiply by Q from geqr',['../de/d55/group__gemqr.html',1,'']]], ['by_20q_20from_20geqrf_65',['{un,or}mqr: multiply by Q from geqrf',['../d7/d50/group__unmqr.html',1,'']]], ['by_20q_20from_20geqrf_20level_202_66',['{un,or}m2r: multiply by Q from geqrf, level 2',['../d7/db6/group__unm2r.html',1,'']]], ['by_20q_20from_20geqrt_67',['gemqrt: multiply by Q from geqrt',['../df/da9/group__gemqrt.html',1,'']]], ['by_20q_20from_20gerqf_68',['{un,or}mrq: multiply by Q from gerqf',['../db/d90/group__unmrq.html',1,'']]], ['by_20q_20from_20hetrd_69',['{un,or}mtr: multiply by Q from hetrd',['../d6/d8a/group__unmtr.html',1,'']]], ['by_20q_20from_20hptrd_70',['{up,op}mtr: multiply by Q from hptrd',['../de/dce/group__upmtr.html',1,'']]], ['by_20q_20from_20laswlq_71',['lamswlq: multiply by Q from laswlq',['../d7/dc8/group__lamswlq.html',1,'']]], ['by_20q_20from_20latsqr_72',['lamtsqr: multiply by Q from latsqr',['../d0/dec/group__lamtsqr.html',1,'']]], ['by_20q_20level_202_20step_20in_20unmlq_73',['{un,or}ml2: multiply by Q, level 2, step in unmlq',['../d3/d5f/group__unml2.html',1,'']]], ['by_20q_20p_20from_20gebrd_74',['{un,or}mbr: multiply by Q, P from gebrd',['../db/d4f/group__unmbr.html',1,'']]], ['by_20reciprocal_75',['rscl: scale vector by reciprocal',['../dd/dc7/group__rscl.html',1,'']]], ['by_20z_20from_20tzrzf_76',['{un,or}mrz: multiply by Z from tzrzf',['../de/d16/group__unmrz.html',1,'']]] ]; .