var searchData= [ ['obsolete_20pre_20ieee_20machines_0',['labad: over/underflow on obsolete pre-IEEE machines',['../db/d91/group__labad.html',1,'']]], ['of_202_1',['of 2',['../d9/d3e/group__gbequb.html',1,'gbequb: equilibration, power of 2'],['../df/d0a/group__geequb.html',1,'geequb: equilibration, power of 2'],['../d1/da9/group__poequb.html',1,'poequb: equilibration, power of 2'],['../d7/d32/group__heequb.html',1,'{he,sy}equb: equilibration, power of 2']]], ['of_202_20vectors_2',['lapll: linear dependence of 2 vectors',['../d0/da1/group__lapll.html',1,'']]], ['of_20coefficient_20matrix_20step_20in_20gelsd_3',['lalsa: SVD of coefficient matrix, step in gelsd',['../d4/d56/group__lalsa.html',1,'']]], ['of_20constants_4',['la_constants: Fortran 95 module of constants',['../d0/d1a/group__la__constants.html',1,'']]], ['of_20geqp3_5',['of geqp3',['../dc/db8/group__laqp2.html',1,'laqp2: step of geqp3'],['../db/d86/group__laqps.html',1,'laqps: step of geqp3']]], ['of_20hessenberg_20step_20in_20hseqr_6',['of Hessenberg step in hseqr',['../d8/df4/group__lahqr.html',1,'lahqr: eig of Hessenberg, step in hseqr'],['../d4/d22/group__laqr0.html',1,'laqr0: eig of Hessenberg, step in hseqr'],['../d2/db8/group__laqr4.html',1,'laqr4: eig of Hessenberg, step in hseqr']]], ['of_20matrices_7',['tgevc: eigvec of pair of matrices',['../d0/d0f/group__tgevc.html',1,'']]], ['of_20pair_20of_20matrices_8',['tgevc: eigvec of pair of matrices',['../d0/d0f/group__tgevc.html',1,'']]], ['of_20plane_20rotations_9',['of plane rotations',['../d6/d07/group__largv.html',1,'largv: generate vector of plane rotations'],['../d1/d51/group__lasr.html',1,'lasr: apply series of plane rotations']]], ['of_20plane_20rotations_20to_202x2_20matrices_10',['lar2v: apply vector of plane rotations to 2x2 matrices',['../df/ddf/group__lar2v.html',1,'']]], ['of_20plane_20rotations_20to_20vectors_11',['lartv: apply vector of plane rotations to vectors',['../df/d2e/group__lartv.html',1,'']]], ['of_20squares_20avoiding_20over_20underflow_12',['lassq: sum-of-squares, avoiding over/underflow',['../d8/d76/group__lassq.html',1,'']]], ['of_20t_20λi_13',['lagtf: LU factor of (T - λI)',['../d1/d90/group__lagtf.html',1,'']]], ['of_20t_20λi_20x_20y_14',['lagts: LU solve of (T - λI) x = y',['../d3/d06/group__lagts.html',1,'']]], ['of_20trapezoidal_20matrices_20step_20in_20ggsvd3_15',['tgsja: generalized SVD of trapezoidal matrices, step in ggsvd3',['../d2/d01/group__tgsja.html',1,'']]], ['of_20triangular_20schur_20form_20blocked_16',['trevc3: eigenvectors of triangular Schur form, blocked',['../d2/d98/group__trevc3.html',1,'']]], ['of_20triangular_20schur_20form_20old_17',['trevc: eigenvectors of triangular Schur form, old',['../da/d6a/group__trevc.html',1,'']]], ['old_18',['old',['../d7/db3/group__lacon.html',1,'lacon: 1-norm estimate, e.g., || A^{-1} ||_1 in gecon, old'],['../da/d6a/group__trevc.html',1,'trevc: eigenvectors of triangular Schur form, old']]], ['on_20obsolete_20pre_20ieee_20machines_19',['labad: over/underflow on obsolete pre-IEEE machines',['../db/d91/group__labad.html',1,'']]], ['one_20eigval_20',['larrk: step in stemr, compute one eigval',['../d7/dcf/group__larrk.html',1,'']]], ['only_20or_20factored_20form_20mdash_21',['— singular values only or factored form —',['../db/d76/group__lasd__comp2.html',1,'']]], ['only_20or_20update_20q_20mdash_22',['— eig value only or update Q —',['../d6/de6/group__laed__comp2.html',1,'']]], ['op_20gtr_3a_20generate_20q_20from_20hetrd_23',['{up,op}gtr: generate Q from hetrd',['../dd/d4d/group__upgtr.html',1,'']]], ['op_20mtr_3a_20multiply_20by_20q_20from_20hptrd_24',['{up,op}mtr: multiply by Q from hptrd',['../de/dce/group__upmtr.html',1,'']]], ['operations_25',['operations',['../db/dac/group__blas0__like__grp.html',1,'Scalar operations'],['../d7/d03/group__scalar__grp.html',1,'Scalar operations']]], ['ops_26',['ops',['../d5/dde/group__blas1__like__grp.html',1,'Level 1 BLAS-like vector ops'],['../d4/d28/group__blas1__grp.html',1,'Level 1 BLAS: vector ops'],['../d7/df0/group__blas2__like__grp.html',1,'Level 2 BLAS-like matrix-vector ops'],['../d5/d37/group__blas2__grp.html',1,'Level 2 BLAS: matrix-vector ops'],['../df/d9a/group__blas3__like__grp.html',1,'Level 3 BLAS-like matrix-matrix ops'],['../d0/d9b/group__blas3__grp.html',1,'Level 3 BLAS: matrix-matrix ops']]], ['or_202x2_20solve_20step_20in_20trevc_27',['laln2: 1x1 or 2x2 solve, step in trevc',['../d2/d8b/group__laln2.html',1,'']]], ['or_20bdb1_3a_20step_20in_20uncsd2by1_28',['{un,or}bdb1: step in uncsd2by1',['../df/da6/group__unbdb1.html',1,'']]], ['or_20bdb2_3a_20step_20in_20uncsd2by1_29',['{un,or}bdb2: step in uncsd2by1',['../dc/d06/group__unbdb2.html',1,'']]], ['or_20bdb3_3a_20step_20in_20uncsd2by1_30',['{un,or}bdb3: step in uncsd2by1',['../d0/d6f/group__unbdb3.html',1,'']]], ['or_20bdb4_3a_20step_20in_20uncsd2by1_31',['{un,or}bdb4: step in uncsd2by1',['../da/d07/group__unbdb4.html',1,'']]], ['or_20bdb5_3a_20step_20in_20uncsd2by1_32',['{un,or}bdb5: step in uncsd2by1',['../db/d1b/group__unbdb5.html',1,'']]], ['or_20bdb6_3a_20step_20in_20uncsd2by1_33',['{un,or}bdb6: step in uncsd2by1',['../da/de1/group__unbdb6.html',1,'']]], ['or_20bdb_3a_20bidiagonalize_20partitioned_20unitary_20matrix_20step_20in_20uncsd_34',['{un,or}bdb: bidiagonalize partitioned unitary matrix, step in uncsd',['../da/da9/group__unbdb.html',1,'']]], ['or_20csd2by1_3a_35',['{un,or}csd2by1: ??',['../dd/dce/group__uncsd2by1.html',1,'']]], ['or_20csd_3a_36',['{un,or}csd: ??',['../d7/dc1/group__uncsd.html',1,'']]], ['or_20factored_20form_20mdash_37',['— singular values only or factored form —',['../db/d76/group__lasd__comp2.html',1,'']]], ['or_20g2l_3a_20step_20in_20ungql_38',['{un,or}g2l: step in ungql',['../d6/dad/group__ung2l.html',1,'']]], ['or_20g2r_3a_20generate_20explicit_20q_20from_20geqrf_20level_202_39',['{un,or}g2r: generate explicit Q from geqrf, level 2',['../da/da2/group__ung2r.html',1,'']]], ['or_20gbr_3a_20generate_20q_20p_20from_20gebrd_40',['{un,or}gbr: generate Q, P from gebrd',['../dc/d45/group__ungbr.html',1,'']]], ['or_20ghr_3a_20generate_20q_20from_20gehrd_41',['{un,or}ghr: generate Q from gehrd',['../de/d26/group__unghr.html',1,'']]], ['or_20gl2_3a_20generate_20explicit_20q_20level_202_20step_20in_20unglq_42',['{un,or}gl2: generate explicit Q, level 2, step in unglq',['../d2/d17/group__ungl2.html',1,'']]], ['or_20glq_3a_20generate_20explicit_20q_20from_20gelqf_43',['{un,or}glq: generate explicit Q from gelqf',['../dc/dad/group__unglq.html',1,'']]], ['or_20gql_3a_20generate_20explicit_20q_20from_20geqlf_44',['{un,or}gql: generate explicit Q from geqlf',['../d5/da3/group__ungql.html',1,'']]], ['or_20gqr_3a_20generate_20explicit_20q_20from_20geqrf_45',['{un,or}gqr: generate explicit Q from geqrf',['../d4/dfc/group__ungqr.html',1,'']]], ['or_20gr2_3a_20step_20in_20ungrq_46',['{un,or}gr2: step in ungrq',['../d0/df7/group__ungr2.html',1,'']]], ['or_20grq_3a_20generate_20explicit_20q_20from_20gerqf_47',['{un,or}grq: generate explicit Q from gerqf',['../d2/dd9/group__ungrq.html',1,'']]], ['or_20gtr_3a_20generate_20q_20from_20hetrd_48',['{un,or}gtr: generate Q from hetrd',['../d0/d92/group__ungtr.html',1,'']]], ['or_20gtsqr_3a_20generate_20q_20from_20latsqr_49',['{un,or}gtsqr: generate Q from latsqr',['../df/d80/group__ungtsqr.html',1,'']]], ['or_20gtsqr_5frow_3a_20generate_20q_20from_20latsqr_50',['{un,or}gtsqr_row: generate Q from latsqr',['../d6/d9c/group__ungtsqr__row.html',1,'']]], ['or_20hr_5fcol_3a_20householder_20reconstruction_51',['{un,or}hr_col: Householder reconstruction',['../df/dc1/group__unhr__col.html',1,'']]], ['or_20hr_5fcol_5fgetrfnp2_3a_20lu_20factor_20without_20pivoting_20level_202_52',['la{un,or}hr_col_getrfnp2: LU factor without pivoting, level 2',['../d1/d03/group__launhr__col__getrfnp2.html',1,'']]], ['or_20hr_5fcol_5fgetrfnp_3a_20lu_20factor_20without_20pivoting_53',['la{un,or}hr_col_getrfnp: LU factor without pivoting',['../d9/d8a/group__launhr__col__getrfnp.html',1,'']]], ['or_20m22_3a_20multiply_20by_20banded_20q_20step_20in_20gghd3_54',['{un,or}m22: multiply by banded Q, step in gghd3',['../d1/d74/group__unm22.html',1,'']]], ['or_20m2l_3a_20step_20in_20unmql_55',['{un,or}m2l: step in unmql',['../db/ddf/group__unm2l.html',1,'']]], ['or_20m2r_3a_20multiply_20by_20q_20from_20geqrf_20level_202_56',['{un,or}m2r: multiply by Q from geqrf, level 2',['../d7/db6/group__unm2r.html',1,'']]], ['or_20mbr_3a_20multiply_20by_20q_20p_20from_20gebrd_57',['{un,or}mbr: multiply by Q, P from gebrd',['../db/d4f/group__unmbr.html',1,'']]], ['or_20mhr_3a_20multiply_20by_20q_20from_20gehrd_58',['{un,or}mhr: multiply by Q from gehrd',['../d7/db9/group__unmhr.html',1,'']]], ['or_20ml2_3a_20multiply_20by_20q_20level_202_20step_20in_20unmlq_59',['{un,or}ml2: multiply by Q, level 2, step in unmlq',['../d3/d5f/group__unml2.html',1,'']]], ['or_20mlq_3a_20multiply_20by_20q_20from_20gelqf_60',['{un,or}mlq: multiply by Q from gelqf',['../d7/d19/group__unmlq.html',1,'']]], ['or_20mql_3a_20multiply_20by_20q_20from_20geqlf_61',['{un,or}mql: multiply by Q from geqlf',['../dd/daa/group__unmql.html',1,'']]], ['or_20mqr_3a_20multiply_20by_20q_20from_20geqrf_62',['{un,or}mqr: multiply by Q from geqrf',['../d7/d50/group__unmqr.html',1,'']]], ['or_20mr2_3a_20step_20in_20unmrq_63',['{un,or}mr2: step in unmrq',['../de/d9e/group__unmr2.html',1,'']]], ['or_20mr3_3a_20step_20in_20unmrz_64',['{un,or}mr3: step in unmrz',['../d2/d4f/group__unmr3.html',1,'']]], ['or_20mrq_3a_20multiply_20by_20q_20from_20gerqf_65',['{un,or}mrq: multiply by Q from gerqf',['../db/d90/group__unmrq.html',1,'']]], ['or_20mrz_3a_20multiply_20by_20z_20from_20tzrzf_66',['{un,or}mrz: multiply by Z from tzrzf',['../de/d16/group__unmrz.html',1,'']]], ['or_20mtr_3a_20multiply_20by_20q_20from_20hetrd_67',['{un,or}mtr: multiply by Q from hetrd',['../d6/d8a/group__unmtr.html',1,'']]], ['or_20single_20single_20vector_68',['la_wwaddw: add to double-double or single-single vector',['../dc/d72/group__la__wwaddw.html',1,'']]], ['or_20update_20q_20mdash_69',['— eig value only or update Q —',['../d6/de6/group__laed__comp2.html',1,'']]], ['orthogonal_20factor_70',['gelsy: least squares using complete orthogonal factor',['../dc/d8b/group__gelsy.html',1,'']]], ['orthogonal_20factor_20step_20in_20tgsja_71',['lags2: 2x2 orthogonal factor, step in tgsja',['../db/d66/group__lags2.html',1,'']]], ['orthogonal_20unitary_20factors_20qr_20cs_20etc_72',['Orthogonal/unitary factors (QR, CS, etc.)',['../d7/d69/group__unitary__top.html',1,'']]], ['other_20auxiliary_20routines_73',['Other auxiliary routines',['../db/d1b/group__aux__grp.html',1,'']]], ['output_74',['gemmtr: general matrix-matrix multiply with triangular output',['../d0/d27/group__gemmtr.html',1,'']]], ['over_20underflow_75',['lassq: sum-of-squares, avoiding over/underflow',['../d8/d76/group__lassq.html',1,'']]], ['over_20underflow_20on_20obsolete_20pre_20ieee_20machines_76',['labad: over/underflow on obsolete pre-IEEE machines',['../db/d91/group__labad.html',1,'']]], ['overflow_20step_20in_20latrs_77',['larmm: scale factor to avoid overflow, step in latrs',['../df/dce/group__larmm.html',1,'']]] ]; .