C-----------------------------------------------------------------------GSY02080 C EIGENVECTORS OF A GENERALIZED SYMMETRIC EIGENPROBLEM BY TRANSFORMATIONGSY02090 C OF THOSE OF THE CORRESPONDING SYMMETRIC MATRIX PRODUCED BY REDUC. GSY02100 C GSY02110 SUBROUTINE REBAK ( LD, N, B, D, M, Z ) GSY02120 C GSY02130 INTEGER LD, M, N GSY02140 REAL*8 B(LD,N), D(N), Z(LD,M) GSY02150 C GSY02160 C LD E FIRST DIMENSION ASSIGNED TO THE TWO-DIMENSIONAL ARRAY GSY02170 C PARAMETERS IN THE CALLING PROGRAM. GSY02180 C GSY02190 C N E ORDER OF THE SYSTEM. GSY02200 C GSY02210 C B E INFORMATION ABOUT THE SIMILARITY TRANSFORMATION GSY02220 C (CHOLESKY DECOMPOSITION) USED BY REDUC, STORED IN THE GSY02230 C SUBDIAGONAL PART OF THE ARRAY. GSY02240 C GSY02250 C D E ADDITIONAL INFORMATION ABOUT THE TRANSFORMATION. GSY02260 C GSY02270 C M E NUMBER OF EIGENVECTORS TO BE TRANSFORMED. GSY02280 C GSY02290 C Z E EIGENVECTORS TO BE TRANSFORMED, IN THE FIRST M COLUMNS OF GSY02300 C THE ARRAY. GSY02310 C R TRANSFORMED EIGENVECTORS. GSY02320 C GSY02330 C THIS SUBROUTINE IS BASED ON THE ALGOL PROCEDURE REBAKA, GSY02340 C NUM. MATH. 11, 99-110(1968) BY MARTIN AND WILKINSON. GSY02350 C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 303-314(1971). GSY02360 C GSY02370 C VERSION FOR THE IBM 3090VF DATED NOVEMBER 1987. GSY02380 C ------------------------------------------------------------------GSY02390 INTEGER I, J, K GSY02400 REAL*8 X GSY02410 C GSY02420 CALL XUFLOW(0) GSY02430 DO 100 J=1,M GSY02440 DO 80 I=N,1,-1 GSY02450 X = Z(I,J) GSY02460 DO 60 K=I+1,N GSY02470 60 X=X-B(K,I)*Z(K,J) GSY02480 80 Z(I,J)=X/D(I) GSY02490 100 CONTINUE GSY02500 RETURN GSY02510 END GSY02520 .