#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c__3 = 3; static integer c__9 = 9; static integer c__0 = 0; /* Subroutine */ int dtimq3_(char *line, integer *nm, integer *mval, integer * nval, integer *nnb, integer *nbval, integer *nxval, integer *nlda, integer *ldaval, doublereal *timmin, doublereal *a, doublereal *copya, doublereal *tau, doublereal *work, integer *iwork, doublereal * reslts, integer *ldr1, integer *ldr2, integer *nout, ftnlen line_len) { /* Initialized data */ static char subnam[6*1] = "DGEQP3"; static integer modes[2] = { 2,3 }; static integer iseed[4] = { 0,0,0,1 }; /* Format strings */ static char fmt_9996[] = "(1x,a6,\002 timing run not attempted\002,/)"; static char fmt_9999[] = "(/\002 *** Speed of \002,a6,\002 in megaflops " "***\002)"; static char fmt_9998[] = "(5x,\002type of matrix:\002,i4)"; static char fmt_9997[] = "(5x,\002line \002,i4,\002 with LDA = \002,i4)"; /* System generated locals */ integer reslts_dim1, reslts_dim2, reslts_offset, i__1, i__2, i__3, i__4, i__5; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void), s_wsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), e_wsle(void); /* Local variables */ static integer ilda; static doublereal cond; static integer mode; static doublereal dmax__; static integer info; static char path[3]; static doublereal time; static integer i__, m, n; static char cname[6]; static integer imode; extern doublereal dopla_(char *, integer *, integer *, integer *, integer *, integer *); static integer minmn; extern /* Subroutine */ int icopy_(integer *, integer *, integer *, integer *, integer *); static doublereal s1, s2; extern /* Subroutine */ int dgeqp3_(integer *, integer *, doublereal *, integer *, integer *, doublereal *, doublereal *, integer *, integer *), dprtb4_(char *, char *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, integer *, integer *, ftnlen, ftnlen, ftnlen); static integer ic, nb, im; extern doublereal dlamch_(char *), dsecnd_(void); static integer lw, nx; extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, ftnlen), dlacpy_( char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); extern doublereal dmflop_(doublereal *, doublereal *, integer *); extern /* Subroutine */ int atimin_(char *, char *, integer *, char *, logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), dlatms_( integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublereal *, integer *, doublereal *, integer *), xlaenv_(integer *, integer *); static doublereal untime; static logical timsub[1]; static integer lda, icl, inb; static doublereal ops; /* Fortran I/O blocks */ static cilist io___8 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___27 = { 0, 6, 0, 0, 0 }; static cilist io___32 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___33 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___34 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___35 = { 0, 0, 0, 0, 0 }; #define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6] #define reslts_ref(a_1,a_2,a_3) reslts[((a_3)*reslts_dim2 + (a_2))*\ reslts_dim1 + a_1] /* -- LAPACK timing routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University December 22, 1999 Rewritten to time qp3 code. Purpose ======= DTIMQ3 times the routines to perform the Rank-Revealing QR factorization of a DOUBLE PRECISION general matrix. Two matrix types may be used for timing. The number of types is set in the parameter NMODE and the matrix types are set in the vector MODES, using the following key: 2. BREAK1 D(1:N-1)=1 and D(N)=1.0/COND in DLATMS 3. GEOM D(I)=COND**(-(I-1)/(N-1)) in DLATMS These numbers are chosen to correspond with the matrix types in the test code. Arguments ========= LINE (input) CHARACTER*80 The input line that requested this routine. The first six characters contain either the name of a subroutine or a generic path name. The remaining characters may be used to specify the individual routines to be timed. See ATIMIN for a full description of the format of the input line. NM (input) INTEGER The number of values of M and N contained in the vectors MVAL and NVAL. The matrix sizes are used in pairs (M,N). MVAL (input) INTEGER array, dimension (NM) The values of the matrix row dimension M. NVAL (input) INTEGER array, dimension (NM) The values of the matrix column dimension N. NNB (input) INTEGER The number of values of NB and NX contained in the vectors NBVAL and NXVAL. The blocking parameters are used in pairs (NB,NX). NBVAL (input) INTEGER array, dimension (NNB) The values of the blocksize NB. NXVAL (input) INTEGER array, dimension (NNB) The values of the crossover point NX. NLDA (input) INTEGER The number of values of LDA contained in the vector LDAVAL. LDAVAL (input) INTEGER array, dimension (NLDA) The values of the leading dimension of the array A. TIMMIN (input) DOUBLE PRECISION The minimum time a subroutine will be timed. A (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX) where LDAMAX and NMAX are the maximum values of LDA and N. COPYA (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX) TAU (workspace) DOUBLE PRECISION array, dimension (MINMN) WORK (workspace) DOUBLE PRECISION array, dimension (3*NMAX) IWORK (workspace) INTEGER array, dimension (2*NMAX) RESLTS (workspace) DOUBLE PRECISION array, dimension (LDR1,LDR2,NLDA) The timing results for each subroutine over the relevant values of MODE, (M,N), and LDA. LDR1 (input) INTEGER The first dimension of RESLTS. LDR1 >= max(1,NM). LDR2 (input) INTEGER The second dimension of RESLTS. LDR2 >= max(1,NM). NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --mval; --nval; --nbval; --nxval; --ldaval; --a; --copya; --tau; --work; --iwork; reslts_dim1 = *ldr1; reslts_dim2 = *ldr2; reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * 1); reslts -= reslts_offset; /* Function Body Extract the timing request from the input line. */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "QP", (ftnlen)2, (ftnlen)2); atimin_(path, line, &c__1, subnam, timsub, nout, &info, (ftnlen)3, ( ftnlen)80, (ftnlen)6); if (! timsub[0] || info != 0) { goto L90; } /* Check that M <= LDA for the input values. */ s_copy(cname, line, (ftnlen)6, (ftnlen)6); atimck_(&c__1, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___8.ciunit = *nout; s_wsfe(&io___8); do_fio(&c__1, cname, (ftnlen)6); e_wsfe(); goto L90; } /* Set the condition number and scaling factor for the matrices to be generated. */ dmax__ = 1.; cond = 1. / dlamch_("Precision"); /* Do for each type of matrix: */ for (imode = 1; imode <= 2; ++imode) { mode = modes[imode - 1]; /* ***************** * Timing xGEQP3 * ***************** Do for each value of LDA: */ i__1 = *nlda; for (ilda = 1; ilda <= i__1; ++ilda) { lda = ldaval[ilda]; /* Do for each pair of values (M,N): */ i__2 = *nm; for (im = 1; im <= i__2; ++im) { m = mval[im]; n = nval[im]; minmn = min(m,n); /* Generate a test matrix of size m by n using the singular value distribution indicated by MODE. */ dlatms_(&m, &n, "Uniform", iseed, "Nonsymm", &tau[1], &mode, & cond, &dmax__, &m, &n, "No packing", ©a[1], &lda, &work[1], &info); /* Do for each pair of values (NB,NX) in NBVAL and NXVAL: */ i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); nx = nxval[inb]; xlaenv_(&c__3, &nx); /* DGEQP3 Computing MAX */ i__4 = 1, i__5 = (n << 1) + (n + 1) * nb; lw = max(i__4,i__5); i__4 = n; for (i__ = 1; i__ <= i__4; ++i__) { iwork[n + i__] = 0; /* L10: */ } dlacpy_("All", &m, &n, ©a[1], &lda, &a[1], &lda); icopy_(&n, &iwork[n + 1], &c__1, &iwork[1], &c__1); ic = 0; s1 = dsecnd_(); L20: dgeqp3_(&m, &n, &a[1], &lda, &iwork[1], &tau[1], &work[1], &lw, &info); s2 = dsecnd_(); if (info != 0) { s_wsle(&io___27); do_lio(&c__9, &c__1, ">>>Warning: INFO returned by ", (ftnlen)29); do_lio(&c__9, &c__1, "DGEQPX is:", (ftnlen)10); do_lio(&c__3, &c__1, (char *)&info, (ftnlen)sizeof( integer)); e_wsle(); info = 0; } time = s2 - s1; ++ic; if (time < *timmin) { dlacpy_("All", &m, &n, ©a[1], &lda, &a[1], &lda); icopy_(&n, &iwork[n + 1], &c__1, &iwork[1], &c__1); goto L20; } /* Subtract the time used in DLACPY. */ icl = 1; s1 = dsecnd_(); L30: s2 = dsecnd_(); untime = s2 - s1; ++icl; if (icl <= ic) { dlacpy_("All", &m, &n, ©a[1], &lda, &a[1], &lda); icopy_(&n, &iwork[n + 1], &c__1, &iwork[1], &c__1); goto L30; } /* The number of flops of xGEQP3 is approximately the the number of flops of xGEQPF. */ time = (time - untime) / (doublereal) ic; ops = dopla_("DGEQPF", &m, &n, &c__0, &c__0, &nb); reslts_ref(inb, im, ilda) = dmflop_(&ops, &time, &info); /* L40: */ } /* L50: */ } /* L60: */ } /* Print the results for each matrix type. */ io___32.ciunit = *nout; s_wsfe(&io___32); do_fio(&c__1, subnam_ref(0, 1), (ftnlen)6); e_wsfe(); io___33.ciunit = *nout; s_wsfe(&io___33); do_fio(&c__1, (char *)&imode, (ftnlen)sizeof(integer)); e_wsfe(); i__1 = *nlda; for (i__ = 1; i__ <= i__1; ++i__) { io___34.ciunit = *nout; s_wsfe(&io___34); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer)); e_wsfe(); /* L70: */ } io___35.ciunit = *nout; s_wsle(&io___35); e_wsle(); dprtb4_("( NB, NX)", "M", "N", nnb, &nbval[1], &nxval[1], nm, &mval[ 1], &nval[1], nlda, &reslts_ref(1, 1, 1), ldr1, ldr2, nout, ( ftnlen)11, (ftnlen)1, (ftnlen)1); /* L80: */ } L90: return 0; /* End of DTIMQ3 */ } /* dtimq3_ */ #undef reslts_ref #undef subnam_ref .