#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublecomplex c_b12 = {-1.,0.}; /* Subroutine */ int ztbt02_(char *uplo, char *trans, char *diag, integer *n, integer *kd, integer *nrhs, doublecomplex *ab, integer *ldab, doublecomplex *x, integer *ldx, doublecomplex *b, integer *ldb, doublecomplex *work, doublereal *rwork, doublereal *resid) { /* System generated locals */ integer ab_dim1, ab_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; doublereal d__1, d__2; /* Local variables */ static integer j; extern logical lsame_(char *, char *); static doublereal anorm, bnorm; extern /* Subroutine */ int ztbmv_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); static doublereal xnorm; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dlamch_(char *), zlantb_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *), dzasum_(integer *, doublecomplex *, integer *); static doublereal eps; #define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1 #define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)] #define x_subscr(a_1,a_2) (a_2)*x_dim1 + a_1 #define x_ref(a_1,a_2) x[x_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= ZTBT02 computes the residual for the computed solution to a triangular system of linear equations A*x = b, A**T *x = b, or A**H *x = b when A is a triangular band matrix. Here A**T denotes the transpose of A, A**H denotes the conjugate transpose of A, and x and b are N by NRHS matrices. The test ratio is the maximum over the number of right hand sides of norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular TRANS (input) CHARACTER*1 Specifies the operation applied to A. = 'N': A *x = b (No transpose) = 'T': A**T *x = b (Transpose) = 'C': A**H *x = b (Conjugate transpose) DIAG (input) CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular N (input) INTEGER The order of the matrix A. N >= 0. KD (input) INTEGER The number of superdiagonals or subdiagonals of the triangular band matrix A. KD >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices X and B. NRHS >= 0. AB (input) COMPLEX*16 array, dimension (LDA,N) The upper or lower triangular band matrix A, stored in the first kd+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). LDAB (input) INTEGER The leading dimension of the array AB. LDAB >= max(1,KD+1). X (input) COMPLEX*16 array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). B (input) COMPLEX*16 array, dimension (LDB,NRHS) The right hand side vectors for the system of linear equations. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). WORK (workspace) COMPLEX*16 array, dimension (N) RWORK (workspace) DOUBLE PRECISION array, dimension (N) RESID (output) DOUBLE PRECISION The maximum over the number of right hand sides of norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). ===================================================================== Quick exit if N = 0 or NRHS = 0 Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1 * 1; ab -= ab_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --work; --rwork; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.; return 0; } /* Compute the 1-norm of A or A'. */ if (lsame_(trans, "N")) { anorm = zlantb_("1", uplo, diag, n, kd, &ab[ab_offset], ldab, &rwork[ 1]); } else { anorm = zlantb_("I", uplo, diag, n, kd, &ab[ab_offset], ldab, &rwork[ 1]); } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute the maximum over the number of right hand sides of norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). */ *resid = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { zcopy_(n, &x_ref(1, j), &c__1, &work[1], &c__1); ztbmv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &work[1], & c__1); zaxpy_(n, &c_b12, &b_ref(1, j), &c__1, &work[1], &c__1); bnorm = dzasum_(n, &work[1], &c__1); xnorm = dzasum_(n, &x_ref(1, j), &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = max(d__1,d__2); } /* L10: */ } return 0; /* End of ZTBT02 */ } /* ztbt02_ */ #undef x_ref #undef x_subscr #undef b_ref #undef b_subscr .