#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static integer c__1 = 1; /* Subroutine */ int zsyt02_(char *uplo, integer *n, integer *nrhs, doublecomplex *a, integer *lda, doublecomplex *x, integer *ldx, doublecomplex *b, integer *ldb, doublereal *rwork, doublereal *resid) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; doublereal d__1, d__2; doublecomplex z__1; /* Local variables */ static integer j; static doublereal anorm, bnorm, xnorm; extern /* Subroutine */ int zsymm_(char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); extern doublereal dlamch_(char *), dzasum_(integer *, doublecomplex *, integer *), zlansy_(char *, char *, integer *, doublecomplex *, integer *, doublereal *); static doublereal eps; #define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1 #define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)] #define x_subscr(a_1,a_2) (a_2)*x_dim1 + a_1 #define x_ref(a_1,a_2) x[x_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZSYT02 computes the residual for a solution to a complex symmetric system of linear equations A*x = b: RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ), where EPS is the machine epsilon. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The number of rows and columns of the matrix A. N >= 0. NRHS (input) INTEGER The number of columns of B, the matrix of right hand sides. NRHS >= 0. A (input) COMPLEX*16 array, dimension (LDA,N) The original complex symmetric matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N) X (input) COMPLEX*16 array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - A*X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). RWORK (workspace) DOUBLE PRECISION array, dimension (N) RESID (output) DOUBLE PRECISION The maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ). ===================================================================== Quick exit if N = 0 or NRHS = 0 Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --rwork; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); anorm = zlansy_("1", uplo, n, &a[a_offset], lda, &rwork[1]); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute B - A*X (or B - A'*X ) and store in B . */ z__1.r = -1., z__1.i = 0.; zsymm_("Left", uplo, n, nrhs, &z__1, &a[a_offset], lda, &x[x_offset], ldx, &c_b1, &b[b_offset], ldb); /* Compute the maximum over the number of right hand sides of norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) . */ *resid = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = dzasum_(n, &b_ref(1, j), &c__1); xnorm = dzasum_(n, &x_ref(1, j), &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = max(d__1,d__2); } /* L10: */ } return 0; /* End of ZSYT02 */ } /* zsyt02_ */ #undef x_ref #undef x_subscr #undef b_ref #undef b_subscr .