#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static doublecomplex c_b1 = {-1e10,-1e10}; static doublecomplex c_b9 = {0.,0.}; static doublecomplex c_b14 = {-1.,0.}; static doublecomplex c_b15 = {1.,0.}; static doublereal c_b23 = -1.; static doublereal c_b24 = 1.; /* Subroutine */ int zqlt02_(integer *m, integer *n, integer *k, doublecomplex *a, doublecomplex *af, doublecomplex *q, doublecomplex * l, integer *lda, doublecomplex *tau, doublecomplex *work, integer * lwork, doublereal *rwork, doublereal *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, q_offset, i__1, i__2; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static integer info; static doublereal resid, anorm; extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zherk_(char *, char *, integer *, integer *, doublereal *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *); extern doublereal dlamch_(char *), zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *); extern doublereal zlansy_(char *, char *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zungql_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *); static doublereal eps; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] #define l_subscr(a_1,a_2) (a_2)*l_dim1 + a_1 #define l_ref(a_1,a_2) l[l_subscr(a_1,a_2)] #define q_subscr(a_1,a_2) (a_2)*q_dim1 + a_1 #define q_ref(a_1,a_2) q[q_subscr(a_1,a_2)] #define af_subscr(a_1,a_2) (a_2)*af_dim1 + a_1 #define af_ref(a_1,a_2) af[af_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= ZQLT02 tests ZUNGQL, which generates an m-by-n matrix Q with orthonornmal columns that is defined as the product of k elementary reflectors. Given the QL factorization of an m-by-n matrix A, ZQLT02 generates the orthogonal matrix Q defined by the factorization of the last k columns of A; it compares L(m-n+1:m,n-k+1:n) with Q(1:m,m-n+1:m)'*A(1:m,n-k+1:n), and checks that the columns of Q are orthonormal. Arguments ========= M (input) INTEGER The number of rows of the matrix Q to be generated. M >= 0. N (input) INTEGER The number of columns of the matrix Q to be generated. M >= N >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. N >= K >= 0. A (input) COMPLEX*16 array, dimension (LDA,N) The m-by-n matrix A which was factorized by ZQLT01. AF (input) COMPLEX*16 array, dimension (LDA,N) Details of the QL factorization of A, as returned by ZGEQLF. See ZGEQLF for further details. Q (workspace) COMPLEX*16 array, dimension (LDA,N) L (workspace) COMPLEX*16 array, dimension (LDA,N) LDA (input) INTEGER The leading dimension of the arrays A, AF, Q and L. LDA >= M. TAU (input) COMPLEX*16 array, dimension (N) The scalar factors of the elementary reflectors corresponding to the QL factorization in AF. WORK (workspace) COMPLEX*16 array, dimension (LWORK) LWORK (input) INTEGER The dimension of the array WORK. RWORK (workspace) DOUBLE PRECISION array, dimension (M) RESULT (output) DOUBLE PRECISION array, dimension (2) The test ratios: RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) ===================================================================== Quick return if possible Parameter adjustments */ l_dim1 = *lda; l_offset = 1 + l_dim1 * 1; l -= l_offset; q_dim1 = *lda; q_offset = 1 + q_dim1 * 1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1 * 1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --tau; --work; --rwork; --result; /* Function Body */ if (*m == 0 || *n == 0 || *k == 0) { result[1] = 0.; result[2] = 0.; return 0; } eps = dlamch_("Epsilon"); /* Copy the last k columns of the factorization to the array Q */ zlaset_("Full", m, n, &c_b1, &c_b1, &q[q_offset], lda); if (*k < *m) { i__1 = *m - *k; zlacpy_("Full", &i__1, k, &af_ref(1, *n - *k + 1), lda, &q_ref(1, *n - *k + 1), lda); } if (*k > 1) { i__1 = *k - 1; i__2 = *k - 1; zlacpy_("Upper", &i__1, &i__2, &af_ref(*m - *k + 1, *n - *k + 2), lda, &q_ref(*m - *k + 1, *n - *k + 2), lda); } /* Generate the last n columns of the matrix Q */ s_copy(srnamc_1.srnamt, "ZUNGQL", (ftnlen)6, (ftnlen)6); zungql_(m, n, k, &q[q_offset], lda, &tau[*n - *k + 1], &work[1], lwork, & info); /* Copy L(m-n+1:m,n-k+1:n) */ zlaset_("Full", n, k, &c_b9, &c_b9, &l_ref(*m - *n + 1, *n - *k + 1), lda); zlacpy_("Lower", k, k, &af_ref(*m - *k + 1, *n - *k + 1), lda, &l_ref(*m - *k + 1, *n - *k + 1), lda); /* Compute L(m-n+1:m,n-k+1:n) - Q(1:m,m-n+1:m)' * A(1:m,n-k+1:n) */ zgemm_("Conjugate transpose", "No transpose", n, k, m, &c_b14, &q[ q_offset], lda, &a_ref(1, *n - *k + 1), lda, &c_b15, &l_ref(*m - * n + 1, *n - *k + 1), lda); /* Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) . */ anorm = zlange_("1", m, k, &a_ref(1, *n - *k + 1), lda, &rwork[1]); resid = zlange_("1", n, k, &l_ref(*m - *n + 1, *n - *k + 1), lda, &rwork[ 1]); if (anorm > 0.) { result[1] = resid / (doublereal) max(1,*m) / anorm / eps; } else { result[1] = 0.; } /* Compute I - Q'*Q */ zlaset_("Full", n, n, &c_b9, &c_b15, &l[l_offset], lda); zherk_("Upper", "Conjugate transpose", n, m, &c_b23, &q[q_offset], lda, & c_b24, &l[l_offset], lda); /* Compute norm( I - Q'*Q ) / ( M * EPS ) . */ resid = zlansy_("1", "Upper", n, &l[l_offset], lda, &rwork[1]); result[2] = resid / (doublereal) max(1,*m) / eps; return 0; /* End of ZQLT02 */ } /* zqlt02_ */ #undef af_ref #undef af_subscr #undef q_ref #undef q_subscr #undef l_ref #undef l_subscr #undef a_ref #undef a_subscr .