#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static doublereal c_b6 = -1.; static doublereal c_b7 = 1.; static integer c__1 = 1; /* Subroutine */ int zgtt02_(char *trans, integer *n, integer *nrhs, doublecomplex *dl, doublecomplex *d__, doublecomplex *du, doublecomplex *x, integer *ldx, doublecomplex *b, integer *ldb, doublereal *rwork, doublereal *resid) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; doublereal d__1, d__2; /* Local variables */ static integer j; extern logical lsame_(char *, char *); static doublereal anorm, bnorm, xnorm; extern doublereal dlamch_(char *); extern /* Subroutine */ int zlagtm_(char *, integer *, integer *, doublereal *, doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublereal *, doublecomplex *, integer *); extern doublereal zlangt_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *), dzasum_(integer *, doublecomplex *, integer *); static doublereal eps; #define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1 #define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)] #define x_subscr(a_1,a_2) (a_2)*x_dim1 + a_1 #define x_ref(a_1,a_2) x[x_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= ZGTT02 computes the residual for the solution to a tridiagonal system of equations: RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS), where EPS is the machine epsilon. Arguments ========= TRANS (input) CHARACTER Specifies the form of the residual. = 'N': B - A * X (No transpose) = 'T': B - A**T * X (Transpose) = 'C': B - A**H * X (Conjugate transpose) N (input) INTEGTER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. DL (input) COMPLEX*16 array, dimension (N-1) The (n-1) sub-diagonal elements of A. D (input) COMPLEX*16 array, dimension (N) The diagonal elements of A. DU (input) COMPLEX*16 array, dimension (N-1) The (n-1) super-diagonal elements of A. X (input) COMPLEX*16 array, dimension (LDX,NRHS) The computed solution vectors X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - op(A)*X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). RWORK (workspace) DOUBLE PRECISION array, dimension (N) RESID (output) DOUBLE PRECISION norm(B - op(A)*X) / (norm(A) * norm(X) * EPS) ===================================================================== Quick exit if N = 0 or NRHS = 0 Parameter adjustments */ --dl; --d__; --du; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --rwork; /* Function Body */ *resid = 0.; if (*n <= 0 || *nrhs == 0) { return 0; } /* Compute the maximum over the number of right hand sides of norm(B - op(A)*X) / ( norm(A) * norm(X) * EPS ). */ if (lsame_(trans, "N")) { anorm = zlangt_("1", n, &dl[1], &d__[1], &du[1]); } else { anorm = zlangt_("I", n, &dl[1], &d__[1], &du[1]); } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute B - op(A)*X. */ zlagtm_(trans, n, nrhs, &c_b6, &dl[1], &d__[1], &du[1], &x[x_offset], ldx, &c_b7, &b[b_offset], ldb); i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = dzasum_(n, &b_ref(1, j), &c__1); xnorm = dzasum_(n, &x_ref(1, j), &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = max(d__1,d__2); } /* L10: */ } return 0; /* End of ZGTT02 */ } /* zgtt02_ */ #undef x_ref #undef x_subscr #undef b_ref #undef b_subscr .