#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__8 = 8; static real c_b6 = 0.f; static real c_b13 = -1.f; static integer c__1 = 1; doublereal stzt01_(integer *m, integer *n, real *a, real *af, integer *lda, real *tau, real *work, integer *lwork) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2; real ret_val; /* Local variables */ static integer i__, j; static real norma, rwork[1]; extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, real *, integer *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int xerbla_(char *, integer *), slaset_( char *, integer *, integer *, real *, real *, real *, integer *), slatzm_(char *, integer *, integer *, real *, integer *, real *, real *, real *, integer *, real *); #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] #define af_ref(a_1,a_2) af[(a_2)*af_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= STZT01 returns || A - R*Q || / ( M * eps * ||A|| ) for an upper trapezoidal A that was factored with STZRQF. Arguments ========= M (input) INTEGER The number of rows of the matrices A and AF. N (input) INTEGER The number of columns of the matrices A and AF. A (input) REAL array, dimension (LDA,N) The original upper trapezoidal M by N matrix A. AF (input) REAL array, dimension (LDA,N) The output of STZRQF for input matrix A. The lower triangle is not referenced. LDA (input) INTEGER The leading dimension of the arrays A and AF. TAU (input) REAL array, dimension (M) Details of the Householder transformations as returned by STZRQF. WORK (workspace) REAL array, dimension (LWORK) LWORK (input) INTEGER The length of the array WORK. LWORK >= m*n + m. ===================================================================== Parameter adjustments */ af_dim1 = *lda; af_offset = 1 + af_dim1 * 1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --tau; --work; /* Function Body */ ret_val = 0.f; if (*lwork < *m * *n + *m) { xerbla_("STZT01", &c__8); return ret_val; } /* Quick return if possible */ if (*m <= 0 || *n <= 0) { return ret_val; } norma = slange_("One-norm", m, n, &a[a_offset], lda, rwork); /* Copy upper triangle R */ slaset_("Full", m, n, &c_b6, &c_b6, &work[1], m); i__1 = *m; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { work[(j - 1) * *m + i__] = af_ref(i__, j); /* L10: */ } /* L20: */ } /* R = R * P(1) * ... *P(m) */ i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n - *m + 1; slatzm_("Right", &i__, &i__2, &af_ref(i__, *m + 1), lda, &tau[i__], & work[(i__ - 1) * *m + 1], &work[*m * *m + 1], m, &work[*m * * n + 1]); /* L30: */ } /* R = R - A */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { saxpy_(m, &c_b13, &a_ref(1, i__), &c__1, &work[(i__ - 1) * *m + 1], & c__1); /* L40: */ } ret_val = slange_("One-norm", m, n, &work[1], m, rwork); ret_val /= slamch_("Epsilon") * (real) max(*m,*n); if (norma != 0.f) { ret_val /= norma; } return ret_val; /* End of STZT01 */ } /* stzt01_ */ #undef af_ref #undef a_ref .