#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static real c_b10 = -1.f; /* Subroutine */ int strt02_(char *uplo, char *trans, char *diag, integer *n, integer *nrhs, real *a, integer *lda, real *x, integer *ldx, real *b, integer *ldb, real *work, real *resid) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; real r__1, r__2; /* Local variables */ static integer j; extern logical lsame_(char *, char *); static real anorm, bnorm; extern doublereal sasum_(integer *, real *, integer *); extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); static real xnorm; extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, real *, integer *), strmv_(char *, char *, char *, integer *, real *, integer *, real *, integer *); extern doublereal slamch_(char *), slantr_(char *, char *, char *, integer *, integer *, real *, integer *, real *); static real eps; #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= STRT02 computes the residual for the computed solution to a triangular system of linear equations A*x = b or A'*x = b. Here A is a triangular matrix, A' is the transpose of A, and x and b are N by NRHS matrices. The test ratio is the maximum over the number of right hand sides of norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), where op(A) denotes A or A' and EPS is the machine epsilon. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular TRANS (input) CHARACTER*1 Specifies the operation applied to A. = 'N': A *x = b (No transpose) = 'T': A'*x = b (Transpose) = 'C': A'*x = b (Conjugate transpose = Transpose) DIAG (input) CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices X and B. NRHS >= 0. A (input) REAL array, dimension (LDA,N) The triangular matrix A. If UPLO = 'U', the leading n by n upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n by n lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). X (input) REAL array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). B (input) REAL array, dimension (LDB,NRHS) The right hand side vectors for the system of linear equations. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). WORK (workspace) REAL array, dimension (N) RESID (output) REAL The maximum over the number of right hand sides of norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). ===================================================================== Quick exit if N = 0 or NRHS = 0 Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --work; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.f; return 0; } /* Compute the 1-norm of A or A'. */ if (lsame_(trans, "N")) { anorm = slantr_("1", uplo, diag, n, n, &a[a_offset], lda, &work[1]); } else { anorm = slantr_("I", uplo, diag, n, n, &a[a_offset], lda, &work[1]); } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = slamch_("Epsilon"); if (anorm <= 0.f) { *resid = 1.f / eps; return 0; } /* Compute the maximum over the number of right hand sides of norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ) */ *resid = 0.f; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { scopy_(n, &x_ref(1, j), &c__1, &work[1], &c__1); strmv_(uplo, trans, diag, n, &a[a_offset], lda, &work[1], &c__1); saxpy_(n, &c_b10, &b_ref(1, j), &c__1, &work[1], &c__1); bnorm = sasum_(n, &work[1], &c__1); xnorm = sasum_(n, &x_ref(1, j), &c__1); if (xnorm <= 0.f) { *resid = 1.f / eps; } else { /* Computing MAX */ r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps; *resid = dmax(r__1,r__2); } /* L10: */ } return 0; /* End of STRT02 */ } /* strt02_ */ #undef x_ref #undef b_ref .