#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static real c_b4 = -1e10f; static integer c__2 = 2; static real c_b22 = -1.f; static real c_b23 = 1.f; /* Subroutine */ int srqt03_(integer *m, integer *n, integer *k, real *af, real *c__, real *cc, real *q, integer *lda, real *tau, real *work, integer *lwork, real *rwork, real *result) { /* Initialized data */ static integer iseed[4] = { 1988,1989,1990,1991 }; /* System generated locals */ integer af_dim1, af_offset, c_dim1, c_offset, cc_dim1, cc_offset, q_dim1, q_offset, i__1, i__2; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static char side[1]; static integer info, j, iside; extern logical lsame_(char *, char *); static real resid; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static integer minmn; static real cnorm; static char trans[1]; static integer mc, nc; extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); static integer itrans; extern /* Subroutine */ int slarnv_(integer *, integer *, integer *, real *), sorgrq_(integer *, integer *, integer *, real *, integer *, real *, real *, integer *, integer *), sormrq_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, real * , integer *, real *, integer *, integer *); static real eps; #define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1] #define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1] #define af_ref(a_1,a_2) af[(a_2)*af_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= SRQT03 tests SORMRQ, which computes Q*C, Q'*C, C*Q or C*Q'. SRQT03 compares the results of a call to SORMRQ with the results of forming Q explicitly by a call to SORGRQ and then performing matrix multiplication by a call to SGEMM. Arguments ========= M (input) INTEGER The number of rows or columns of the matrix C; C is n-by-m if Q is applied from the left, or m-by-n if Q is applied from the right. M >= 0. N (input) INTEGER The order of the orthogonal matrix Q. N >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the orthogonal matrix Q. N >= K >= 0. AF (input) REAL array, dimension (LDA,N) Details of the RQ factorization of an m-by-n matrix, as returned by SGERQF. See SGERQF for further details. C (workspace) REAL array, dimension (LDA,N) CC (workspace) REAL array, dimension (LDA,N) Q (workspace) REAL array, dimension (LDA,N) LDA (input) INTEGER The leading dimension of the arrays AF, C, CC, and Q. TAU (input) REAL array, dimension (min(M,N)) The scalar factors of the elementary reflectors corresponding to the RQ factorization in AF. WORK (workspace) REAL array, dimension (LWORK) LWORK (input) INTEGER The length of WORK. LWORK must be at least M, and should be M*NB, where NB is the blocksize for this environment. RWORK (workspace) REAL array, dimension (M) RESULT (output) REAL array, dimension (4) The test ratios compare two techniques for multiplying a random matrix C by an n-by-n orthogonal matrix Q. RESULT(1) = norm( Q*C - Q*C ) / ( N * norm(C) * EPS ) RESULT(2) = norm( C*Q - C*Q ) / ( N * norm(C) * EPS ) RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS ) RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS ) ===================================================================== Parameter adjustments */ q_dim1 = *lda; q_offset = 1 + q_dim1 * 1; q -= q_offset; cc_dim1 = *lda; cc_offset = 1 + cc_dim1 * 1; cc -= cc_offset; c_dim1 = *lda; c_offset = 1 + c_dim1 * 1; c__ -= c_offset; af_dim1 = *lda; af_offset = 1 + af_dim1 * 1; af -= af_offset; --tau; --work; --rwork; --result; /* Function Body */ eps = slamch_("Epsilon"); minmn = min(*m,*n); /* Quick return if possible */ if (minmn == 0) { result[1] = 0.f; result[2] = 0.f; result[3] = 0.f; result[4] = 0.f; return 0; } /* Copy the last k rows of the factorization to the array Q */ slaset_("Full", n, n, &c_b4, &c_b4, &q[q_offset], lda); if (*k > 0 && *n > *k) { i__1 = *n - *k; slacpy_("Full", k, &i__1, &af_ref(*m - *k + 1, 1), lda, &q_ref(*n - * k + 1, 1), lda); } if (*k > 1) { i__1 = *k - 1; i__2 = *k - 1; slacpy_("Lower", &i__1, &i__2, &af_ref(*m - *k + 2, *n - *k + 1), lda, &q_ref(*n - *k + 2, *n - *k + 1), lda); } /* Generate the n-by-n matrix Q */ s_copy(srnamc_1.srnamt, "SORGRQ", (ftnlen)6, (ftnlen)6); sorgrq_(n, n, k, &q[q_offset], lda, &tau[minmn - *k + 1], &work[1], lwork, &info); for (iside = 1; iside <= 2; ++iside) { if (iside == 1) { *(unsigned char *)side = 'L'; mc = *n; nc = *m; } else { *(unsigned char *)side = 'R'; mc = *m; nc = *n; } /* Generate MC by NC matrix C */ i__1 = nc; for (j = 1; j <= i__1; ++j) { slarnv_(&c__2, iseed, &mc, &c___ref(1, j)); /* L10: */ } cnorm = slange_("1", &mc, &nc, &c__[c_offset], lda, &rwork[1]); if (cnorm == 0.f) { cnorm = 1.f; } for (itrans = 1; itrans <= 2; ++itrans) { if (itrans == 1) { *(unsigned char *)trans = 'N'; } else { *(unsigned char *)trans = 'T'; } /* Copy C */ slacpy_("Full", &mc, &nc, &c__[c_offset], lda, &cc[cc_offset], lda); /* Apply Q or Q' to C */ s_copy(srnamc_1.srnamt, "SORMRQ", (ftnlen)6, (ftnlen)6); if (*k > 0) { sormrq_(side, trans, &mc, &nc, k, &af_ref(*m - *k + 1, 1), lda, &tau[minmn - *k + 1], &cc[cc_offset], lda, &work[ 1], lwork, &info); } /* Form explicit product and subtract */ if (lsame_(side, "L")) { sgemm_(trans, "No transpose", &mc, &nc, &mc, &c_b22, &q[ q_offset], lda, &c__[c_offset], lda, &c_b23, &cc[ cc_offset], lda); } else { sgemm_("No transpose", trans, &mc, &nc, &nc, &c_b22, &c__[ c_offset], lda, &q[q_offset], lda, &c_b23, &cc[ cc_offset], lda); } /* Compute error in the difference */ resid = slange_("1", &mc, &nc, &cc[cc_offset], lda, &rwork[1]); result[(iside - 1 << 1) + itrans] = resid / ((real) max(1,*n) * cnorm * eps); /* L20: */ } /* L30: */ } return 0; /* End of SRQT03 */ } /* srqt03_ */ #undef af_ref #undef q_ref #undef c___ref .