#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static real c_b4 = -1.f; static real c_b5 = 1.f; static integer c__1 = 1; /* Subroutine */ int sptt02_(integer *n, integer *nrhs, real *d__, real *e, real *x, integer *ldx, real *b, integer *ldb, real *resid) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; real r__1, r__2; /* Local variables */ static integer j; static real anorm, bnorm; extern doublereal sasum_(integer *, real *, integer *); static real xnorm; extern doublereal slamch_(char *); extern /* Subroutine */ int slaptm_(integer *, integer *, real *, real *, real *, real *, integer *, real *, real *, integer *); extern doublereal slanst_(char *, integer *, real *, real *); static real eps; #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= SPTT02 computes the residual for the solution to a symmetric tridiagonal system of equations: RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS), where EPS is the machine epsilon. Arguments ========= N (input) INTEGTER The order of the matrix A. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. D (input) REAL array, dimension (N) The n diagonal elements of the tridiagonal matrix A. E (input) REAL array, dimension (N-1) The (n-1) subdiagonal elements of the tridiagonal matrix A. X (input) REAL array, dimension (LDX,NRHS) The n by nrhs matrix of solution vectors X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). B (input/output) REAL array, dimension (LDB,NRHS) On entry, the n by nrhs matrix of right hand side vectors B. On exit, B is overwritten with the difference B - A*X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). RESID (output) REAL norm(B - A*X) / (norm(A) * norm(X) * EPS) ===================================================================== Quick return if possible Parameter adjustments */ --d__; --e; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; /* Function Body */ if (*n <= 0) { *resid = 0.f; return 0; } /* Compute the 1-norm of the tridiagonal matrix A. */ anorm = slanst_("1", n, &d__[1], &e[1]); /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = slamch_("Epsilon"); if (anorm <= 0.f) { *resid = 1.f / eps; return 0; } /* Compute B - A*X. */ slaptm_(n, nrhs, &c_b4, &d__[1], &e[1], &x[x_offset], ldx, &c_b5, &b[ b_offset], ldb); /* Compute the maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */ *resid = 0.f; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = sasum_(n, &b_ref(1, j), &c__1); xnorm = sasum_(n, &x_ref(1, j), &c__1); if (xnorm <= 0.f) { *resid = 1.f / eps; } else { /* Computing MAX */ r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps; *resid = dmax(r__1,r__2); } /* L10: */ } return 0; /* End of SPTT02 */ } /* sptt02_ */ #undef x_ref #undef b_ref .