#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static real c_b6 = -1.f; static real c_b7 = 1.f; static integer c__1 = 1; /* Subroutine */ int sgtt02_(char *trans, integer *n, integer *nrhs, real *dl, real *d__, real *du, real *x, integer *ldx, real *b, integer *ldb, real *rwork, real *resid) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; real r__1, r__2; /* Local variables */ static integer j; extern logical lsame_(char *, char *); static real anorm, bnorm; extern doublereal sasum_(integer *, real *, integer *); static real xnorm; extern doublereal slamch_(char *); extern /* Subroutine */ int slagtm_(char *, integer *, integer *, real *, real *, real *, real *, real *, integer *, real *, real *, integer *); extern doublereal slangt_(char *, integer *, real *, real *, real *); static real eps; #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= SGTT02 computes the residual for the solution to a tridiagonal system of equations: RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS), where EPS is the machine epsilon. Arguments ========= TRANS (input) CHARACTER Specifies the form of the residual. = 'N': B - A * X (No transpose) = 'T': B - A'* X (Transpose) = 'C': B - A'* X (Conjugate transpose = Transpose) N (input) INTEGTER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. DL (input) REAL array, dimension (N-1) The (n-1) sub-diagonal elements of A. D (input) REAL array, dimension (N) The diagonal elements of A. DU (input) REAL array, dimension (N-1) The (n-1) super-diagonal elements of A. X (input) REAL array, dimension (LDX,NRHS) The computed solution vectors X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). B (input/output) REAL array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - op(A)*X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). RWORK (workspace) REAL array, dimension (N) RESID (output) REAL norm(B - op(A)*X) / (norm(A) * norm(X) * EPS) ===================================================================== Quick exit if N = 0 or NRHS = 0 Parameter adjustments */ --dl; --d__; --du; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --rwork; /* Function Body */ *resid = 0.f; if (*n <= 0 || *nrhs == 0) { return 0; } /* Compute the maximum over the number of right hand sides of norm(B - op(A)*X) / ( norm(A) * norm(X) * EPS ). */ if (lsame_(trans, "N")) { anorm = slangt_("1", n, &dl[1], &d__[1], &du[1]); } else { anorm = slangt_("I", n, &dl[1], &d__[1], &du[1]); } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = slamch_("Epsilon"); if (anorm <= 0.f) { *resid = 1.f / eps; return 0; } /* Compute B - op(A)*X. */ slagtm_(trans, n, nrhs, &c_b6, &dl[1], &d__[1], &du[1], &x[x_offset], ldx, &c_b7, &b[b_offset], ldb); i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = sasum_(n, &b_ref(1, j), &c__1); xnorm = sasum_(n, &x_ref(1, j), &c__1); if (xnorm <= 0.f) { *resid = 1.f / eps; } else { /* Computing MAX */ r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps; *resid = dmax(r__1,r__2); } /* L10: */ } return 0; /* End of SGTT02 */ } /* sgtt02_ */ #undef x_ref #undef b_ref .