#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static real c_b8 = -1.f; static real c_b10 = 1.f; /* Subroutine */ int sgbt02_(char *trans, integer *m, integer *n, integer *kl, integer *ku, integer *nrhs, real *a, integer *lda, real *x, integer * ldx, real *b, integer *ldb, real *resid) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3; real r__1, r__2; /* Local variables */ static integer j; extern logical lsame_(char *, char *); static real anorm, bnorm; extern /* Subroutine */ int sgbmv_(char *, integer *, integer *, integer * , integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); extern doublereal sasum_(integer *, real *, integer *); static integer i1, i2, n1; static real xnorm; static integer kd; extern doublereal slamch_(char *); static real eps; #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= SGBT02 computes the residual for a solution of a banded system of equations A*x = b or A'*x = b: RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS). where EPS is the machine precision. Arguments ========= TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A *x = b = 'T': A'*x = b, where A' is the transpose of A = 'C': A'*x = b, where A' is the transpose of A M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. KL (input) INTEGER The number of subdiagonals within the band of A. KL >= 0. KU (input) INTEGER The number of superdiagonals within the band of A. KU >= 0. NRHS (input) INTEGER The number of columns of B. NRHS >= 0. A (input) REAL array, dimension (LDA,N) The original matrix A in band storage, stored in rows 1 to KL+KU+1. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,KL+KU+1). X (input) REAL array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. LDX (input) INTEGER The leading dimension of the array X. If TRANS = 'N', LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). B (input/output) REAL array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - A*X. LDB (input) INTEGER The leading dimension of the array B. IF TRANS = 'N', LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). RESID (output) REAL The maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ). ===================================================================== Quick return if N = 0 pr NRHS = 0 Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; /* Function Body */ if (*m <= 0 || *n <= 0 || *nrhs <= 0) { *resid = 0.f; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = slamch_("Epsilon"); kd = *ku + 1; anorm = 0.f; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = kd + 1 - j; i1 = max(i__2,1); /* Computing MIN */ i__2 = kd + *m - j, i__3 = *kl + kd; i2 = min(i__2,i__3); /* Computing MAX */ i__2 = i2 - i1 + 1; r__1 = anorm, r__2 = sasum_(&i__2, &a_ref(i1, j), &c__1); anorm = dmax(r__1,r__2); /* L10: */ } if (anorm <= 0.f) { *resid = 1.f / eps; return 0; } if (lsame_(trans, "T") || lsame_(trans, "C")) { n1 = *n; } else { n1 = *m; } /* Compute B - A*X (or B - A'*X ) */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { sgbmv_(trans, m, n, kl, ku, &c_b8, &a[a_offset], lda, &x_ref(1, j), & c__1, &c_b10, &b_ref(1, j), &c__1); /* L20: */ } /* Compute the maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */ *resid = 0.f; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = sasum_(&n1, &b_ref(1, j), &c__1); xnorm = sasum_(&n1, &x_ref(1, j), &c__1); if (xnorm <= 0.f) { *resid = 1.f / eps; } else { /* Computing MAX */ r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps; *resid = dmax(r__1,r__2); } /* L30: */ } return 0; /* End of SGBT02 */ } /* sgbt02_ */ #undef x_ref #undef b_ref #undef a_ref .