#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static doublereal c_b4 = -1.; static doublereal c_b5 = 1.; static integer c__1 = 1; /* Subroutine */ int dptt02_(integer *n, integer *nrhs, doublereal *d__, doublereal *e, doublereal *x, integer *ldx, doublereal *b, integer * ldb, doublereal *resid) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; doublereal d__1, d__2; /* Local variables */ static integer j; extern doublereal dasum_(integer *, doublereal *, integer *); static doublereal anorm, bnorm, xnorm; extern doublereal dlamch_(char *); extern /* Subroutine */ int dlaptm_(integer *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *); static doublereal eps; #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define x_ref(a_1,a_2) x[(a_2)*x_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= DPTT02 computes the residual for the solution to a symmetric tridiagonal system of equations: RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS), where EPS is the machine epsilon. Arguments ========= N (input) INTEGTER The order of the matrix A. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. D (input) DOUBLE PRECISION array, dimension (N) The n diagonal elements of the tridiagonal matrix A. E (input) DOUBLE PRECISION array, dimension (N-1) The (n-1) subdiagonal elements of the tridiagonal matrix A. X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) The n by nrhs matrix of solution vectors X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the n by nrhs matrix of right hand side vectors B. On exit, B is overwritten with the difference B - A*X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). RESID (output) DOUBLE PRECISION norm(B - A*X) / (norm(A) * norm(X) * EPS) ===================================================================== Quick return if possible Parameter adjustments */ --d__; --e; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; /* Function Body */ if (*n <= 0) { *resid = 0.; return 0; } /* Compute the 1-norm of the tridiagonal matrix A. */ anorm = dlanst_("1", n, &d__[1], &e[1]); /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute B - A*X. */ dlaptm_(n, nrhs, &c_b4, &d__[1], &e[1], &x[x_offset], ldx, &c_b5, &b[ b_offset], ldb); /* Compute the maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ). */ *resid = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = dasum_(n, &b_ref(1, j), &c__1); xnorm = dasum_(n, &x_ref(1, j), &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = max(d__1,d__2); } /* L10: */ } return 0; /* End of DPTT02 */ } /* dptt02_ */ #undef x_ref #undef b_ref .