#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Common Block Declarations */ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static doublereal c_b4 = -1e10; static doublereal c_b9 = 0.; static doublereal c_b14 = -1.; static doublereal c_b15 = 1.; /* Subroutine */ int dlqt02_(integer *m, integer *n, integer *k, doublereal * a, doublereal *af, doublereal *q, doublereal *l, integer *lda, doublereal *tau, doublereal *work, integer *lwork, doublereal *rwork, doublereal *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, l_dim1, l_offset, q_dim1, q_offset, i__1; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static integer info; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); static doublereal resid, anorm; extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), dorglq_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *); extern doublereal dlansy_(char *, char *, integer *, doublereal *, integer *, doublereal *); static doublereal eps; #define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1] #define af_ref(a_1,a_2) af[(a_2)*af_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= DLQT02 tests DORGLQ, which generates an m-by-n matrix Q with orthonornmal rows that is defined as the product of k elementary reflectors. Given the LQ factorization of an m-by-n matrix A, DLQT02 generates the orthogonal matrix Q defined by the factorization of the first k rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and checks that the rows of Q are orthonormal. Arguments ========= M (input) INTEGER The number of rows of the matrix Q to be generated. M >= 0. N (input) INTEGER The number of columns of the matrix Q to be generated. N >= M >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. M >= K >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The m-by-n matrix A which was factorized by DLQT01. AF (input) DOUBLE PRECISION array, dimension (LDA,N) Details of the LQ factorization of A, as returned by DGELQF. See DGELQF for further details. Q (workspace) DOUBLE PRECISION array, dimension (LDA,N) L (workspace) DOUBLE PRECISION array, dimension (LDA,M) LDA (input) INTEGER The leading dimension of the arrays A, AF, Q and L. LDA >= N. TAU (input) DOUBLE PRECISION array, dimension (M) The scalar factors of the elementary reflectors corresponding to the LQ factorization in AF. WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) LWORK (input) INTEGER The dimension of the array WORK. RWORK (workspace) DOUBLE PRECISION array, dimension (M) RESULT (output) DOUBLE PRECISION array, dimension (2) The test ratios: RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) ===================================================================== Parameter adjustments */ l_dim1 = *lda; l_offset = 1 + l_dim1 * 1; l -= l_offset; q_dim1 = *lda; q_offset = 1 + q_dim1 * 1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1 * 1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --tau; --work; --rwork; --result; /* Function Body */ eps = dlamch_("Epsilon"); /* Copy the first k rows of the factorization to the array Q */ dlaset_("Full", m, n, &c_b4, &c_b4, &q[q_offset], lda); i__1 = *n - 1; dlacpy_("Upper", k, &i__1, &af_ref(1, 2), lda, &q_ref(1, 2), lda); /* Generate the first n columns of the matrix Q */ s_copy(srnamc_1.srnamt, "DORGLQ", (ftnlen)6, (ftnlen)6); dorglq_(m, n, k, &q[q_offset], lda, &tau[1], &work[1], lwork, &info); /* Copy L(1:k,1:m) */ dlaset_("Full", k, m, &c_b9, &c_b9, &l[l_offset], lda); dlacpy_("Lower", k, m, &af[af_offset], lda, &l[l_offset], lda); /* Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)' */ dgemm_("No transpose", "Transpose", k, m, n, &c_b14, &a[a_offset], lda, & q[q_offset], lda, &c_b15, &l[l_offset], lda); /* Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) . */ anorm = dlange_("1", k, n, &a[a_offset], lda, &rwork[1]); resid = dlange_("1", k, m, &l[l_offset], lda, &rwork[1]); if (anorm > 0.) { result[1] = resid / (doublereal) max(1,*n) / anorm / eps; } else { result[1] = 0.; } /* Compute I - Q*Q' */ dlaset_("Full", m, m, &c_b9, &c_b15, &l[l_offset], lda); dsyrk_("Upper", "No transpose", m, n, &c_b14, &q[q_offset], lda, &c_b15, & l[l_offset], lda); /* Compute norm( I - Q*Q' ) / ( N * EPS ) . */ resid = dlansy_("1", "Upper", m, &l[l_offset], lda, &rwork[1]); result[2] = resid / (doublereal) max(1,*n) / eps; return 0; /* End of DLQT02 */ } /* dlqt02_ */ #undef af_ref #undef q_ref .