#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Subroutine */ int ctpt06_(real *rcond, real *rcondc, char *uplo, char * diag, integer *n, complex *ap, real *rwork, real *rat) { /* System generated locals */ real r__1, r__2; /* Local variables */ static real rmin, rmax, anorm; extern doublereal slamch_(char *); static real bignum; extern doublereal clantp_(char *, char *, char *, integer *, complex *, real *); static real eps; /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= CTPT06 computes a test ratio comparing RCOND (the reciprocal condition number of the triangular matrix A) and RCONDC, the estimate computed by CTPCON. Information about the triangular matrix is used if one estimate is zero and the other is non-zero to decide if underflow in the estimate is justified. Arguments ========= RCOND (input) REAL The estimate of the reciprocal condition number obtained by forming the explicit inverse of the matrix A and computing RCOND = 1/( norm(A) * norm(inv(A)) ). RCONDC (input) REAL The estimate of the reciprocal condition number computed by CTPCON. UPLO (input) CHARACTER Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular DIAG (input) CHARACTER Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular N (input) INTEGER The order of the matrix A. N >= 0. AP (input) COMPLEX array, dimension (N*(N+1)/2) The upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. RWORK (workspace) REAL array, dimension (N) RAT (output) REAL The test ratio. If both RCOND and RCONDC are nonzero, RAT = MAX( RCOND, RCONDC )/MIN( RCOND, RCONDC ) - 1. If RAT = 0, the two estimates are exactly the same. ===================================================================== Parameter adjustments */ --rwork; --ap; /* Function Body */ eps = slamch_("Epsilon"); rmax = dmax(*rcond,*rcondc); rmin = dmin(*rcond,*rcondc); /* Do the easy cases first. */ if (rmin < 0.f) { /* Invalid value for RCOND or RCONDC, return 1/EPS. */ *rat = 1.f / eps; } else if (rmin > 0.f) { /* Both estimates are positive, return RMAX/RMIN - 1. */ *rat = rmax / rmin - 1.f; } else if (rmax == 0.f) { /* Both estimates zero. */ *rat = 0.f; } else { /* One estimate is zero, the other is non-zero. If the matrix is ill-conditioned, return the nonzero estimate multiplied by 1/EPS; if the matrix is badly scaled, return the nonzero estimate multiplied by BIGNUM/TMAX, where TMAX is the maximum element in absolute value in A. */ bignum = 1.f / slamch_("Safe minimum"); anorm = clantp_("M", uplo, diag, n, &ap[1], &rwork[1]); /* Computing MIN */ r__1 = bignum / dmax(1.f,anorm), r__2 = 1.f / eps; *rat = rmax * dmin(r__1,r__2); } return 0; /* End of CTPT06 */ } /* ctpt06_ */ .