#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static complex c_b1 = {1.f,0.f}; static integer c__1 = 1; /* Subroutine */ int cspt02_(char *uplo, integer *n, integer *nrhs, complex * a, complex *x, integer *ldx, complex *b, integer *ldb, real *rwork, real *resid) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; real r__1, r__2; complex q__1; /* Local variables */ static integer j; static real anorm, bnorm; extern /* Subroutine */ int cspmv_(char *, integer *, complex *, complex * , complex *, integer *, complex *, complex *, integer *); static real xnorm; extern doublereal slamch_(char *), clansp_(char *, char *, integer *, complex *, real *), scasum_(integer *, complex *, integer *); static real eps; #define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1 #define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)] #define x_subscr(a_1,a_2) (a_2)*x_dim1 + a_1 #define x_ref(a_1,a_2) x[x_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= CSPT02 computes the residual in the solution of a complex symmetric system of linear equations A*x = b when packed storage is used for the coefficient matrix. The ratio computed is RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS). where EPS is the machine precision. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the complex symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The number of rows and columns of the matrix A. N >= 0. NRHS (input) INTEGER The number of columns of B, the matrix of right hand sides. NRHS >= 0. A (input) COMPLEX array, dimension (N*(N+1)/2) The original complex symmetric matrix A, stored as a packed triangular matrix. X (input) COMPLEX array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). B (input/output) COMPLEX array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - A*X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). RWORK (workspace) REAL array, dimension (N) RESID (output) REAL The maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ). ===================================================================== Quick exit if N = 0 or NRHS = 0 Parameter adjustments */ --a; x_dim1 = *ldx; x_offset = 1 + x_dim1 * 1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --rwork; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.f; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = slamch_("Epsilon"); anorm = clansp_("1", uplo, n, &a[1], &rwork[1]); if (anorm <= 0.f) { *resid = 1.f / eps; return 0; } /* Compute B - A*X for the matrix of right hand sides B. */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { q__1.r = -1.f, q__1.i = 0.f; cspmv_(uplo, n, &q__1, &a[1], &x_ref(1, j), &c__1, &c_b1, &b_ref(1, j) , &c__1); /* L10: */ } /* Compute the maximum over the number of right hand sides of norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) . */ *resid = 0.f; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bnorm = scasum_(n, &b_ref(1, j), &c__1); xnorm = scasum_(n, &x_ref(1, j), &c__1); if (xnorm <= 0.f) { *resid = 1.f / eps; } else { /* Computing MAX */ r__1 = *resid, r__2 = bnorm / anorm / xnorm / eps; *resid = dmax(r__1,r__2); } /* L20: */ } return 0; /* End of CSPT02 */ } /* cspt02_ */ #undef x_ref #undef x_subscr #undef b_ref #undef b_subscr .