#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static real c_b7 = -1.f; static real c_b9 = 1.f; /* Subroutine */ int sbdt02_(integer *m, integer *n, real *b, integer *ldb, real *c__, integer *ldc, real *u, integer *ldu, real *work, real * resid) { /* System generated locals */ integer b_dim1, b_offset, c_dim1, c_offset, u_dim1, u_offset, i__1; real r__1, r__2; /* Local variables */ static integer j; static real bnorm; extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); extern doublereal sasum_(integer *, real *, integer *); extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); static real realmn, eps; #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] #define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= SBDT02 tests the change of basis C = U' * B by computing the residual RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ), where B and C are M by N matrices, U is an M by M orthogonal matrix, and EPS is the machine precision. Arguments ========= M (input) INTEGER The number of rows of the matrices B and C and the order of the matrix Q. N (input) INTEGER The number of columns of the matrices B and C. B (input) REAL array, dimension (LDB,N) The m by n matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,M). C (input) REAL array, dimension (LDC,N) The m by n matrix C, assumed to contain U' * B. LDC (input) INTEGER The leading dimension of the array C. LDC >= max(1,M). U (input) REAL array, dimension (LDU,M) The m by m orthogonal matrix U. LDU (input) INTEGER The leading dimension of the array U. LDU >= max(1,M). WORK (workspace) REAL array, dimension (M) RESID (output) REAL RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ), ====================================================================== Quick return if possible Parameter adjustments */ b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1 * 1; c__ -= c_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; --work; /* Function Body */ *resid = 0.f; if (*m <= 0 || *n <= 0) { return 0; } realmn = (real) max(*m,*n); eps = slamch_("Precision"); /* Compute norm( B - U * C ) */ i__1 = *n; for (j = 1; j <= i__1; ++j) { scopy_(m, &b_ref(1, j), &c__1, &work[1], &c__1); sgemv_("No transpose", m, m, &c_b7, &u[u_offset], ldu, &c___ref(1, j), &c__1, &c_b9, &work[1], &c__1); /* Computing MAX */ r__1 = *resid, r__2 = sasum_(m, &work[1], &c__1); *resid = dmax(r__1,r__2); /* L10: */ } /* Compute norm of B. */ bnorm = slange_("1", m, n, &b[b_offset], ldb, &work[1]); if (bnorm <= 0.f) { if (*resid != 0.f) { *resid = 1.f / eps; } } else { if (bnorm >= *resid) { *resid = *resid / bnorm / (realmn * eps); } else { if (bnorm < 1.f) { /* Computing MIN */ r__1 = *resid, r__2 = realmn * bnorm; *resid = dmin(r__1,r__2) / bnorm / (realmn * eps); } else { /* Computing MIN */ r__1 = *resid / bnorm; *resid = dmin(r__1,realmn) / (realmn * eps); } } } return 0; /* End of SBDT02 */ } /* sbdt02_ */ #undef c___ref #undef b_ref .