#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static doublereal c_b7 = 0.; static doublereal c_b8 = 1.; static doublereal c_b10 = -1.; static integer c__1 = 1; /* Subroutine */ int dort01_(char *rowcol, integer *m, integer *n, doublereal *u, integer *ldu, doublereal *work, integer *lwork, doublereal *resid) { /* System generated locals */ integer u_dim1, u_offset, i__1, i__2; doublereal d__1, d__2; /* Local variables */ extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, integer *); static integer i__, j, k; extern logical lsame_(char *, char *); static integer mnmin; extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern doublereal dlamch_(char *); extern /* Subroutine */ int dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *); extern doublereal dlansy_(char *, char *, integer *, doublereal *, integer *, doublereal *); static integer ldwork; static char transu[1]; static doublereal eps, tmp; #define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= DORT01 checks that the matrix U is orthogonal by computing the ratio RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', or RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. Alternatively, if there isn't sufficient workspace to form I - U*U' or I - U'*U, the ratio is computed as RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', or RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. where EPS is the machine precision. ROWCOL is used only if m = n; if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is assumed to be 'R'. Arguments ========= ROWCOL (input) CHARACTER Specifies whether the rows or columns of U should be checked for orthogonality. Used only if M = N. = 'R': Check for orthogonal rows of U = 'C': Check for orthogonal columns of U M (input) INTEGER The number of rows of the matrix U. N (input) INTEGER The number of columns of the matrix U. U (input) DOUBLE PRECISION array, dimension (LDU,N) The orthogonal matrix U. U is checked for orthogonal columns if m > n or if m = n and ROWCOL = 'C'. U is checked for orthogonal rows if m < n or if m = n and ROWCOL = 'R'. LDU (input) INTEGER The leading dimension of the array U. LDU >= max(1,M). WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) LWORK (input) INTEGER The length of the array WORK. For best performance, LWORK should be at least N*(N+1) if ROWCOL = 'C' or M*(M+1) if ROWCOL = 'R', but the test will be done even if LWORK is 0. RESID (output) DOUBLE PRECISION RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'. ===================================================================== Parameter adjustments */ u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; --work; /* Function Body */ *resid = 0.; /* Quick return if possible */ if (*m <= 0 || *n <= 0) { return 0; } eps = dlamch_("Precision"); if (*m < *n || *m == *n && lsame_(rowcol, "R")) { *(unsigned char *)transu = 'N'; k = *n; } else { *(unsigned char *)transu = 'T'; k = *m; } mnmin = min(*m,*n); if ((mnmin + 1) * mnmin <= *lwork) { ldwork = mnmin; } else { ldwork = 0; } if (ldwork > 0) { /* Compute I - U*U' or I - U'*U. */ dlaset_("Upper", &mnmin, &mnmin, &c_b7, &c_b8, &work[1], &ldwork); dsyrk_("Upper", transu, &mnmin, &k, &c_b10, &u[u_offset], ldu, &c_b8, &work[1], &ldwork); /* Compute norm( I - U*U' ) / ( K * EPS ) . */ *resid = dlansy_("1", "Upper", &mnmin, &work[1], &ldwork, &work[ ldwork * mnmin + 1]); *resid = *resid / (doublereal) k / eps; } else if (*(unsigned char *)transu == 'T') { /* Find the maximum element in abs( I - U'*U ) / ( m * EPS ) */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { if (i__ != j) { tmp = 0.; } else { tmp = 1.; } tmp -= ddot_(m, &u_ref(1, i__), &c__1, &u_ref(1, j), &c__1); /* Computing MAX */ d__1 = *resid, d__2 = abs(tmp); *resid = max(d__1,d__2); /* L10: */ } /* L20: */ } *resid = *resid / (doublereal) (*m) / eps; } else { /* Find the maximum element in abs( I - U*U' ) / ( n * EPS ) */ i__1 = *m; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { if (i__ != j) { tmp = 0.; } else { tmp = 1.; } tmp -= ddot_(n, &u_ref(j, 1), ldu, &u_ref(i__, 1), ldu); /* Computing MAX */ d__1 = *resid, d__2 = abs(tmp); *resid = max(d__1,d__2); /* L30: */ } /* L40: */ } *resid = *resid / (doublereal) (*n) / eps; } return 0; /* End of DORT01 */ } /* dort01_ */ #undef u_ref .