#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int cunt03_(char *rc, integer *mu, integer *mv, integer *n, integer *k, complex *u, integer *ldu, complex *v, integer *ldv, complex *work, integer *lwork, real *rwork, real *result, integer * info) { /* System generated locals */ integer u_dim1, u_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4; real r__1, r__2; complex q__1, q__2; /* Builtin functions */ double c_abs(complex *); void c_div(complex *, complex *, complex *); /* Local variables */ static integer i__, j; static complex s; extern logical lsame_(char *, char *); extern /* Subroutine */ int cunt01_(char *, integer *, integer *, complex *, integer *, complex *, integer *, real *, real *); extern integer icamax_(integer *, complex *, integer *); extern doublereal slamch_(char *); static complex su, sv; extern /* Subroutine */ int xerbla_(char *, integer *); static integer irc, lmx; static real ulp, res1, res2; #define u_subscr(a_1,a_2) (a_2)*u_dim1 + a_1 #define u_ref(a_1,a_2) u[u_subscr(a_1,a_2)] #define v_subscr(a_1,a_2) (a_2)*v_dim1 + a_1 #define v_ref(a_1,a_2) v[v_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= CUNT03 compares two unitary matrices U and V to see if their corresponding rows or columns span the same spaces. The rows are checked if RC = 'R', and the columns are checked if RC = 'C'. RESULT is the maximum of | V*V' - I | / ( MV ulp ), if RC = 'R', or | V'*V - I | / ( MV ulp ), if RC = 'C', and the maximum over rows (or columns) 1 to K of | U(i) - S*V(i) |/ ( N ulp ) where abs(S) = 1 (chosen to minimize the expression), U(i) is the i-th row (column) of U, and V(i) is the i-th row (column) of V. Arguments ========== RC (input) CHARACTER*1 If RC = 'R' the rows of U and V are to be compared. If RC = 'C' the columns of U and V are to be compared. MU (input) INTEGER The number of rows of U if RC = 'R', and the number of columns if RC = 'C'. If MU = 0 CUNT03 does nothing. MU must be at least zero. MV (input) INTEGER The number of rows of V if RC = 'R', and the number of columns if RC = 'C'. If MV = 0 CUNT03 does nothing. MV must be at least zero. N (input) INTEGER If RC = 'R', the number of columns in the matrices U and V, and if RC = 'C', the number of rows in U and V. If N = 0 CUNT03 does nothing. N must be at least zero. K (input) INTEGER The number of rows or columns of U and V to compare. 0 <= K <= max(MU,MV). U (input) COMPLEX array, dimension (LDU,N) The first matrix to compare. If RC = 'R', U is MU by N, and if RC = 'C', U is N by MU. LDU (input) INTEGER The leading dimension of U. If RC = 'R', LDU >= max(1,MU), and if RC = 'C', LDU >= max(1,N). V (input) COMPLEX array, dimension (LDV,N) The second matrix to compare. If RC = 'R', V is MV by N, and if RC = 'C', V is N by MV. LDV (input) INTEGER The leading dimension of V. If RC = 'R', LDV >= max(1,MV), and if RC = 'C', LDV >= max(1,N). WORK (workspace) COMPLEX array, dimension (LWORK) LWORK (input) INTEGER The length of the array WORK. For best performance, LWORK should be at least N*N if RC = 'C' or M*M if RC = 'R', but the tests will be done even if LWORK is 0. RWORK (workspace) REAL array, dimension (max(MV,N)) RESULT (output) REAL The value computed by the test described above. RESULT is limited to 1/ulp to avoid overflow. INFO (output) INTEGER 0 indicates a successful exit -k indicates the k-th parameter had an illegal value ===================================================================== Check inputs Parameter adjustments */ u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; v_dim1 = *ldv; v_offset = 1 + v_dim1 * 1; v -= v_offset; --work; --rwork; /* Function Body */ *info = 0; if (lsame_(rc, "R")) { irc = 0; } else if (lsame_(rc, "C")) { irc = 1; } else { irc = -1; } if (irc == -1) { *info = -1; } else if (*mu < 0) { *info = -2; } else if (*mv < 0) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*k < 0 || *k > max(*mu,*mv)) { *info = -5; } else if (irc == 0 && *ldu < max(1,*mu) || irc == 1 && *ldu < max(1,*n)) { *info = -7; } else if (irc == 0 && *ldv < max(1,*mv) || irc == 1 && *ldv < max(1,*n)) { *info = -9; } if (*info != 0) { i__1 = -(*info); xerbla_("CUNT03", &i__1); return 0; } /* Initialize result */ *result = 0.f; if (*mu == 0 || *mv == 0 || *n == 0) { return 0; } /* Machine constants */ ulp = slamch_("Precision"); if (irc == 0) { /* Compare rows */ res1 = 0.f; i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { lmx = icamax_(n, &u_ref(i__, 1), ldu); i__2 = v_subscr(i__, lmx); if (v[i__2].r == 0.f && v[i__2].i == 0.f) { sv.r = 1.f, sv.i = 0.f; } else { r__1 = c_abs(&v_ref(i__, lmx)); q__2.r = r__1, q__2.i = 0.f; c_div(&q__1, &q__2, &v_ref(i__, lmx)); sv.r = q__1.r, sv.i = q__1.i; } i__2 = u_subscr(i__, lmx); if (u[i__2].r == 0.f && u[i__2].i == 0.f) { su.r = 1.f, su.i = 0.f; } else { r__1 = c_abs(&u_ref(i__, lmx)); q__2.r = r__1, q__2.i = 0.f; c_div(&q__1, &q__2, &u_ref(i__, lmx)); su.r = q__1.r, su.i = q__1.i; } c_div(&q__1, &sv, &su); s.r = q__1.r, s.i = q__1.i; i__2 = *n; for (j = 1; j <= i__2; ++j) { /* Computing MAX */ i__3 = u_subscr(i__, j); i__4 = v_subscr(i__, j); q__2.r = s.r * v[i__4].r - s.i * v[i__4].i, q__2.i = s.r * v[ i__4].i + s.i * v[i__4].r; q__1.r = u[i__3].r - q__2.r, q__1.i = u[i__3].i - q__2.i; r__1 = res1, r__2 = c_abs(&q__1); res1 = dmax(r__1,r__2); /* L10: */ } /* L20: */ } res1 /= (real) (*n) * ulp; /* Compute orthogonality of rows of V. */ cunt01_("Rows", mv, n, &v[v_offset], ldv, &work[1], lwork, &rwork[1], &res2); } else { /* Compare columns */ res1 = 0.f; i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { lmx = icamax_(n, &u_ref(1, i__), &c__1); i__2 = v_subscr(lmx, i__); if (v[i__2].r == 0.f && v[i__2].i == 0.f) { sv.r = 1.f, sv.i = 0.f; } else { r__1 = c_abs(&v_ref(lmx, i__)); q__2.r = r__1, q__2.i = 0.f; c_div(&q__1, &q__2, &v_ref(lmx, i__)); sv.r = q__1.r, sv.i = q__1.i; } i__2 = u_subscr(lmx, i__); if (u[i__2].r == 0.f && u[i__2].i == 0.f) { su.r = 1.f, su.i = 0.f; } else { r__1 = c_abs(&u_ref(lmx, i__)); q__2.r = r__1, q__2.i = 0.f; c_div(&q__1, &q__2, &u_ref(lmx, i__)); su.r = q__1.r, su.i = q__1.i; } c_div(&q__1, &sv, &su); s.r = q__1.r, s.i = q__1.i; i__2 = *n; for (j = 1; j <= i__2; ++j) { /* Computing MAX */ i__3 = u_subscr(j, i__); i__4 = v_subscr(j, i__); q__2.r = s.r * v[i__4].r - s.i * v[i__4].i, q__2.i = s.r * v[ i__4].i + s.i * v[i__4].r; q__1.r = u[i__3].r - q__2.r, q__1.i = u[i__3].i - q__2.i; r__1 = res1, r__2 = c_abs(&q__1); res1 = dmax(r__1,r__2); /* L30: */ } /* L40: */ } res1 /= (real) (*n) * ulp; /* Compute orthogonality of columns of V. */ cunt01_("Columns", n, mv, &v[v_offset], ldv, &work[1], lwork, &rwork[ 1], &res2); } /* Computing MIN */ r__1 = dmax(res1,res2), r__2 = 1.f / ulp; *result = dmin(r__1,r__2); return 0; /* End of CUNT03 */ } /* cunt03_ */ #undef v_ref #undef v_subscr #undef u_ref #undef u_subscr .