#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; /* Subroutine */ int cstt22_(integer *n, integer *m, integer *kband, real *ad, real *ae, real *sd, real *se, complex *u, integer *ldu, complex * work, integer *ldwork, real *rwork, real *result) { /* System generated locals */ integer u_dim1, u_offset, work_dim1, work_offset, i__1, i__2, i__3, i__4, i__5, i__6; real r__1, r__2, r__3, r__4, r__5; complex q__1, q__2; /* Local variables */ static complex aukj; static real unfl; static integer i__, j, k; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); static real anorm, wnorm; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), slamch_(char *), clansy_(char *, char *, integer *, complex *, integer *, real *); static real ulp; #define work_subscr(a_1,a_2) (a_2)*work_dim1 + a_1 #define work_ref(a_1,a_2) work[work_subscr(a_1,a_2)] #define u_subscr(a_1,a_2) (a_2)*u_dim1 + a_1 #define u_ref(a_1,a_2) u[u_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= CSTT22 checks a set of M eigenvalues and eigenvectors, A U = U S where A is Hermitian tridiagonal, the columns of U are unitary, and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1). Two tests are performed: RESULT(1) = | U* A U - S | / ( |A| m ulp ) RESULT(2) = | I - U*U | / ( m ulp ) Arguments ========= N (input) INTEGER The size of the matrix. If it is zero, CSTT22 does nothing. It must be at least zero. M (input) INTEGER The number of eigenpairs to check. If it is zero, CSTT22 does nothing. It must be at least zero. KBAND (input) INTEGER The bandwidth of the matrix S. It may only be zero or one. If zero, then S is diagonal, and SE is not referenced. If one, then S is Hermitian tri-diagonal. AD (input) REAL array, dimension (N) The diagonal of the original (unfactored) matrix A. A is assumed to be Hermitian tridiagonal. AE (input) REAL array, dimension (N) The off-diagonal of the original (unfactored) matrix A. A is assumed to be Hermitian tridiagonal. AE(1) is ignored, AE(2) is the (1,2) and (2,1) element, etc. SD (input) REAL array, dimension (N) The diagonal of the (Hermitian tri-) diagonal matrix S. SE (input) REAL array, dimension (N) The off-diagonal of the (Hermitian tri-) diagonal matrix S. Not referenced if KBSND=0. If KBAND=1, then AE(1) is ignored, SE(2) is the (1,2) and (2,1) element, etc. U (input) REAL array, dimension (LDU, N) The unitary matrix in the decomposition. LDU (input) INTEGER The leading dimension of U. LDU must be at least N. WORK (workspace) COMPLEX array, dimension (LDWORK, M+1) LDWORK (input) INTEGER The leading dimension of WORK. LDWORK must be at least max(1,M). RWORK (workspace) REAL array, dimension (N) RESULT (output) REAL array, dimension (2) The values computed by the two tests described above. The values are currently limited to 1/ulp, to avoid overflow. ===================================================================== Parameter adjustments */ --ad; --ae; --sd; --se; u_dim1 = *ldu; u_offset = 1 + u_dim1 * 1; u -= u_offset; work_dim1 = *ldwork; work_offset = 1 + work_dim1 * 1; work -= work_offset; --rwork; --result; /* Function Body */ result[1] = 0.f; result[2] = 0.f; if (*n <= 0 || *m <= 0) { return 0; } unfl = slamch_("Safe minimum"); ulp = slamch_("Epsilon"); /* Do Test 1 Compute the 1-norm of A. */ if (*n > 1) { anorm = dabs(ad[1]) + dabs(ae[1]); i__1 = *n - 1; for (j = 2; j <= i__1; ++j) { /* Computing MAX */ r__4 = anorm, r__5 = (r__1 = ad[j], dabs(r__1)) + (r__2 = ae[j], dabs(r__2)) + (r__3 = ae[j - 1], dabs(r__3)); anorm = dmax(r__4,r__5); /* L10: */ } /* Computing MAX */ r__3 = anorm, r__4 = (r__1 = ad[*n], dabs(r__1)) + (r__2 = ae[*n - 1], dabs(r__2)); anorm = dmax(r__3,r__4); } else { anorm = dabs(ad[1]); } anorm = dmax(anorm,unfl); /* Norm of U*AU - S */ i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *m; for (j = 1; j <= i__2; ++j) { i__3 = work_subscr(i__, j); work[i__3].r = 0.f, work[i__3].i = 0.f; i__3 = *n; for (k = 1; k <= i__3; ++k) { i__4 = k; i__5 = u_subscr(k, j); q__1.r = ad[i__4] * u[i__5].r, q__1.i = ad[i__4] * u[i__5].i; aukj.r = q__1.r, aukj.i = q__1.i; if (k != *n) { i__4 = k; i__5 = u_subscr(k + 1, j); q__2.r = ae[i__4] * u[i__5].r, q__2.i = ae[i__4] * u[i__5] .i; q__1.r = aukj.r + q__2.r, q__1.i = aukj.i + q__2.i; aukj.r = q__1.r, aukj.i = q__1.i; } if (k != 1) { i__4 = k - 1; i__5 = u_subscr(k - 1, j); q__2.r = ae[i__4] * u[i__5].r, q__2.i = ae[i__4] * u[i__5] .i; q__1.r = aukj.r + q__2.r, q__1.i = aukj.i + q__2.i; aukj.r = q__1.r, aukj.i = q__1.i; } i__4 = work_subscr(i__, j); i__5 = work_subscr(i__, j); i__6 = u_subscr(k, i__); q__2.r = u[i__6].r * aukj.r - u[i__6].i * aukj.i, q__2.i = u[ i__6].r * aukj.i + u[i__6].i * aukj.r; q__1.r = work[i__5].r + q__2.r, q__1.i = work[i__5].i + q__2.i; work[i__4].r = q__1.r, work[i__4].i = q__1.i; /* L20: */ } /* L30: */ } i__2 = work_subscr(i__, i__); i__3 = work_subscr(i__, i__); i__4 = i__; q__1.r = work[i__3].r - sd[i__4], q__1.i = work[i__3].i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; if (*kband == 1) { if (i__ != 1) { i__2 = work_subscr(i__, i__ - 1); i__3 = work_subscr(i__, i__ - 1); i__4 = i__ - 1; q__1.r = work[i__3].r - se[i__4], q__1.i = work[i__3].i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; } if (i__ != *n) { i__2 = work_subscr(i__, i__ + 1); i__3 = work_subscr(i__, i__ + 1); i__4 = i__; q__1.r = work[i__3].r - se[i__4], q__1.i = work[i__3].i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; } } /* L40: */ } wnorm = clansy_("1", "L", m, &work[work_offset], m, &rwork[1]); if (anorm > wnorm) { result[1] = wnorm / anorm / (*m * ulp); } else { if (anorm < 1.f) { /* Computing MIN */ r__1 = wnorm, r__2 = *m * anorm; result[1] = dmin(r__1,r__2) / anorm / (*m * ulp); } else { /* Computing MIN */ r__1 = wnorm / anorm, r__2 = (real) (*m); result[1] = dmin(r__1,r__2) / (*m * ulp); } } /* Do Test 2 Compute U*U - I */ cgemm_("T", "N", m, m, n, &c_b2, &u[u_offset], ldu, &u[u_offset], ldu, & c_b1, &work[work_offset], m); i__1 = *m; for (j = 1; j <= i__1; ++j) { i__2 = work_subscr(j, j); i__3 = work_subscr(j, j); q__1.r = work[i__3].r - 1.f, q__1.i = work[i__3].i; work[i__2].r = q__1.r, work[i__2].i = q__1.i; /* L50: */ } /* Computing MIN */ r__1 = (real) (*m), r__2 = clange_("1", m, m, &work[work_offset], m, & rwork[1]); result[2] = dmin(r__1,r__2) / (*m * ulp); return 0; /* End of CSTT22 */ } /* cstt22_ */ #undef u_ref #undef u_subscr #undef work_ref #undef work_subscr .