#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int clsets_(integer *m, integer *p, integer *n, complex *a, complex *af, integer *lda, complex *b, complex *bf, integer *ldb, complex *c__, complex *cf, complex *d__, complex *df, complex *x, complex *work, integer *lwork, real *rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, bf_dim1, bf_offset; /* Local variables */ static integer info; extern /* Subroutine */ int cget02_(char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *), ccopy_(integer *, complex *, integer * , complex *, integer *), cgglse_(integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, complex *, complex *, integer *, integer *), clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *); /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= CLSETS tests CGGLSE - a subroutine for solving linear equality constrained least square problem (LSE). Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. P (input) INTEGER The number of rows of the matrix B. P >= 0. N (input) INTEGER The number of columns of the matrices A and B. N >= 0. A (input) COMPLEX array, dimension (LDA,N) The M-by-N matrix A. AF (workspace) COMPLEX array, dimension (LDA,N) LDA (input) INTEGER The leading dimension of the arrays A, AF, Q and R. LDA >= max(M,N). B (input) COMPLEX array, dimension (LDB,N) The P-by-N matrix A. BF (workspace) COMPLEX array, dimension (LDB,N) LDB (input) INTEGER The leading dimension of the arrays B, BF, V and S. LDB >= max(P,N). C (input) COMPLEX array, dimension( M ) the vector C in the LSE problem. CF (workspace) COMPLEX array, dimension( M ) D (input) COMPLEX array, dimension( P ) the vector D in the LSE problem. DF (workspace) COMPLEX array, dimension( P ) X (output) COMPLEX array, dimension( N ) solution vector X in the LSE problem. WORK (workspace) COMPLEX array, dimension (LWORK) LWORK (input) INTEGER The dimension of the array WORK. RWORK (workspace) REAL array, dimension (M) RESULT (output) REAL array, dimension (2) The test ratios: RESULT(1) = norm( A*x - c )/ norm(A)*norm(X)*EPS RESULT(2) = norm( B*x - d )/ norm(B)*norm(X)*EPS ==================================================================== Copy the matrices A and B to the arrays AF and BF, and the vectors C and D to the arrays CF and DF, Parameter adjustments */ af_dim1 = *lda; af_offset = 1 + af_dim1 * 1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; bf_dim1 = *ldb; bf_offset = 1 + bf_dim1 * 1; bf -= bf_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --c__; --cf; --d__; --df; --x; --work; --rwork; --result; /* Function Body */ clacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda); clacpy_("Full", p, n, &b[b_offset], ldb, &bf[bf_offset], ldb); ccopy_(m, &c__[1], &c__1, &cf[1], &c__1); ccopy_(p, &d__[1], &c__1, &df[1], &c__1); /* Solve LSE problem */ cgglse_(m, n, p, &af[af_offset], lda, &bf[bf_offset], ldb, &cf[1], &df[1], &x[1], &work[1], lwork, &info); /* Test the residual for the solution of LSE Compute RESULT(1) = norm( A*x - c ) / norm(A)*norm(X)*EPS */ ccopy_(m, &c__[1], &c__1, &cf[1], &c__1); ccopy_(p, &d__[1], &c__1, &df[1], &c__1); cget02_("No transpose", m, n, &c__1, &a[a_offset], lda, &x[1], n, &cf[1], m, &rwork[1], &result[1]); /* Compute result(2) = norm( B*x - d ) / norm(B)*norm(X)*EPS */ cget02_("No transpose", p, n, &c__1, &b[b_offset], ldb, &x[1], n, &df[1], p, &rwork[1], &result[2]); return 0; /* End of CLSETS */ } /* clsets_ */ .