#include "blaswrap.h" /* -- translated by f2c (version 19990503). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static complex c_b3 = {-1e10f,0.f}; static real c_b34 = -1.f; static real c_b35 = 1.f; /* Subroutine */ int cgrqts_(integer *m, integer *p, integer *n, complex *a, complex *af, complex *q, complex *r__, integer *lda, complex *taua, complex *b, complex *bf, complex *z__, complex *t, complex *bwk, integer *ldb, complex *taub, complex *work, integer *lwork, real * rwork, real *result) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, r_dim1, r_offset, q_dim1, q_offset, b_dim1, b_offset, bf_dim1, bf_offset, t_dim1, t_offset, z_dim1, z_offset, bwk_dim1, bwk_offset, i__1, i__2; real r__1; complex q__1; /* Local variables */ static integer info; static real unfl; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *), cherk_(char *, char *, integer *, integer *, real *, complex *, integer *, real * , complex *, integer *); static real resid, anorm, bnorm; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), clanhe_(char *, char *, integer *, complex *, integer *, real *), slamch_(char *); extern /* Subroutine */ int cggrqf_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, complex *, integer *, integer *), clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cungrq_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); static real ulp; #define q_subscr(a_1,a_2) (a_2)*q_dim1 + a_1 #define q_ref(a_1,a_2) q[q_subscr(a_1,a_2)] #define r___subscr(a_1,a_2) (a_2)*r_dim1 + a_1 #define r___ref(a_1,a_2) r__[r___subscr(a_1,a_2)] #define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1 #define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)] #define af_subscr(a_1,a_2) (a_2)*af_dim1 + a_1 #define af_ref(a_1,a_2) af[af_subscr(a_1,a_2)] #define bf_subscr(a_1,a_2) (a_2)*bf_dim1 + a_1 #define bf_ref(a_1,a_2) bf[bf_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= CGRQTS tests CGGRQF, which computes the GRQ factorization of an M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. P (input) INTEGER The number of rows of the matrix B. P >= 0. N (input) INTEGER The number of columns of the matrices A and B. N >= 0. A (input) COMPLEX array, dimension (LDA,N) The M-by-N matrix A. AF (output) COMPLEX array, dimension (LDA,N) Details of the GRQ factorization of A and B, as returned by CGGRQF, see CGGRQF for further details. Q (output) COMPLEX array, dimension (LDA,N) The N-by-N unitary matrix Q. R (workspace) COMPLEX array, dimension (LDA,MAX(M,N)) LDA (input) INTEGER The leading dimension of the arrays A, AF, R and Q. LDA >= max(M,N). TAUA (output) COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors, as returned by SGGQRC. B (input) COMPLEX array, dimension (LDB,N) On entry, the P-by-N matrix A. BF (output) COMPLEX array, dimension (LDB,N) Details of the GQR factorization of A and B, as returned by CGGRQF, see CGGRQF for further details. Z (output) REAL array, dimension (LDB,P) The P-by-P unitary matrix Z. T (workspace) COMPLEX array, dimension (LDB,max(P,N)) BWK (workspace) COMPLEX array, dimension (LDB,N) LDB (input) INTEGER The leading dimension of the arrays B, BF, Z and T. LDB >= max(P,N). TAUB (output) COMPLEX array, dimension (min(P,N)) The scalar factors of the elementary reflectors, as returned by SGGRQF. WORK (workspace) COMPLEX array, dimension (LWORK) LWORK (input) INTEGER The dimension of the array WORK, LWORK >= max(M,P,N)**2. RWORK (workspace) REAL array, dimension (M) RESULT (output) REAL array, dimension (4) The test ratios: RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP) RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP) RESULT(3) = norm( I - Q'*Q ) / ( N*ULP ) RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) ===================================================================== Parameter adjustments */ r_dim1 = *lda; r_offset = 1 + r_dim1 * 1; r__ -= r_offset; q_dim1 = *lda; q_offset = 1 + q_dim1 * 1; q -= q_offset; af_dim1 = *lda; af_offset = 1 + af_dim1 * 1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --taua; bwk_dim1 = *ldb; bwk_offset = 1 + bwk_dim1 * 1; bwk -= bwk_offset; t_dim1 = *ldb; t_offset = 1 + t_dim1 * 1; t -= t_offset; z_dim1 = *ldb; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; bf_dim1 = *ldb; bf_offset = 1 + bf_dim1 * 1; bf -= bf_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --taub; --work; --rwork; --result; /* Function Body */ ulp = slamch_("Precision"); unfl = slamch_("Safe minimum"); /* Copy the matrix A to the array AF. */ clacpy_("Full", m, n, &a[a_offset], lda, &af[af_offset], lda); clacpy_("Full", p, n, &b[b_offset], ldb, &bf[bf_offset], ldb); /* Computing MAX */ r__1 = clange_("1", m, n, &a[a_offset], lda, &rwork[1]); anorm = dmax(r__1,unfl); /* Computing MAX */ r__1 = clange_("1", p, n, &b[b_offset], ldb, &rwork[1]); bnorm = dmax(r__1,unfl); /* Factorize the matrices A and B in the arrays AF and BF. */ cggrqf_(m, p, n, &af[af_offset], lda, &taua[1], &bf[bf_offset], ldb, & taub[1], &work[1], lwork, &info); /* Generate the N-by-N matrix Q */ claset_("Full", n, n, &c_b3, &c_b3, &q[q_offset], lda); if (*m <= *n) { if (*m > 0 && *m < *n) { i__1 = *n - *m; clacpy_("Full", m, &i__1, &af[af_offset], lda, &q_ref(*n - *m + 1, 1), lda); } if (*m > 1) { i__1 = *m - 1; i__2 = *m - 1; clacpy_("Lower", &i__1, &i__2, &af_ref(2, *n - *m + 1), lda, & q_ref(*n - *m + 2, *n - *m + 1), lda); } } else { if (*n > 1) { i__1 = *n - 1; i__2 = *n - 1; clacpy_("Lower", &i__1, &i__2, &af_ref(*m - *n + 2, 1), lda, & q_ref(2, 1), lda); } } i__1 = min(*m,*n); cungrq_(n, n, &i__1, &q[q_offset], lda, &taua[1], &work[1], lwork, &info); /* Generate the P-by-P matrix Z */ claset_("Full", p, p, &c_b3, &c_b3, &z__[z_offset], ldb); if (*p > 1) { i__1 = *p - 1; clacpy_("Lower", &i__1, n, &bf_ref(2, 1), ldb, &z___ref(2, 1), ldb); } i__1 = min(*p,*n); cungqr_(p, p, &i__1, &z__[z_offset], ldb, &taub[1], &work[1], lwork, & info); /* Copy R */ claset_("Full", m, n, &c_b1, &c_b1, &r__[r_offset], lda); if (*m <= *n) { clacpy_("Upper", m, m, &af_ref(1, *n - *m + 1), lda, &r___ref(1, *n - *m + 1), lda); } else { i__1 = *m - *n; clacpy_("Full", &i__1, n, &af[af_offset], lda, &r__[r_offset], lda); clacpy_("Upper", n, n, &af_ref(*m - *n + 1, 1), lda, &r___ref(*m - *n + 1, 1), lda); } /* Copy T */ claset_("Full", p, n, &c_b1, &c_b1, &t[t_offset], ldb); clacpy_("Upper", p, n, &bf[bf_offset], ldb, &t[t_offset], ldb); /* Compute R - A*Q' */ q__1.r = -1.f, q__1.i = 0.f; cgemm_("No transpose", "Conjugate transpose", m, n, n, &q__1, &a[a_offset] , lda, &q[q_offset], lda, &c_b2, &r__[r_offset], lda); /* Compute norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP ) . */ resid = clange_("1", m, n, &r__[r_offset], lda, &rwork[1]); if (anorm > 0.f) { /* Computing MAX */ i__1 = max(1,*m); result[1] = resid / (real) max(i__1,*n) / anorm / ulp; } else { result[1] = 0.f; } /* Compute T*Q - Z'*B */ cgemm_("Conjugate transpose", "No transpose", p, n, p, &c_b2, &z__[ z_offset], ldb, &b[b_offset], ldb, &c_b1, &bwk[bwk_offset], ldb); q__1.r = -1.f, q__1.i = 0.f; cgemm_("No transpose", "No transpose", p, n, n, &c_b2, &t[t_offset], ldb, &q[q_offset], lda, &q__1, &bwk[bwk_offset], ldb); /* Compute norm( T*Q - Z'*B ) / ( MAX(P,N)*norm(A)*ULP ) . */ resid = clange_("1", p, n, &bwk[bwk_offset], ldb, &rwork[1]); if (bnorm > 0.f) { /* Computing MAX */ i__1 = max(1,*p); result[2] = resid / (real) max(i__1,*m) / bnorm / ulp; } else { result[2] = 0.f; } /* Compute I - Q*Q' */ claset_("Full", n, n, &c_b1, &c_b2, &r__[r_offset], lda); cherk_("Upper", "No Transpose", n, n, &c_b34, &q[q_offset], lda, &c_b35, & r__[r_offset], lda); /* Compute norm( I - Q'*Q ) / ( N * ULP ) . */ resid = clanhe_("1", "Upper", n, &r__[r_offset], lda, &rwork[1]); result[3] = resid / (real) max(1,*n) / ulp; /* Compute I - Z'*Z */ claset_("Full", p, p, &c_b1, &c_b2, &t[t_offset], ldb); cherk_("Upper", "Conjugate transpose", p, p, &c_b34, &z__[z_offset], ldb, &c_b35, &t[t_offset], ldb); /* Compute norm( I - Z'*Z ) / ( P*ULP ) . */ resid = clanhe_("1", "Upper", p, &t[t_offset], ldb, &rwork[1]); result[4] = resid / (real) max(1,*p) / ulp; return 0; /* End of CGRQTS */ } /* cgrqts_ */ #undef bf_ref #undef bf_subscr #undef af_ref #undef af_subscr #undef z___ref #undef z___subscr #undef r___ref #undef r___subscr #undef q_ref #undef q_subscr .