#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int sorg2l_(integer *m, integer *n, integer *k, real *a, integer *lda, real *tau, real *work, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= SORG2L generates an m by n real matrix Q with orthonormal columns, which is defined as the last n columns of a product of k elementary reflectors of order m Q = H(k) . . . H(2) H(1) as returned by SGEQLF. Arguments ========= M (input) INTEGER The number of rows of the matrix Q. M >= 0. N (input) INTEGER The number of columns of the matrix Q. M >= N >= 0. K (input) INTEGER The number of elementary reflectors whose product defines the matrix Q. N >= K >= 0. A (input/output) REAL array, dimension (LDA,N) On entry, the (n-k+i)-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by SGEQLF in the last k columns of its array argument A. On exit, the m by n matrix Q. LDA (input) INTEGER The first dimension of the array A. LDA >= max(1,M). TAU (input) REAL array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by SGEQLF. WORK (workspace) REAL array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument has an illegal value ===================================================================== Test the input arguments Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; real r__1; /* Local variables */ static integer i__, j, l; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), slarf_(char *, integer *, integer *, real *, integer *, real *, real *, integer *, real *); static integer ii; extern /* Subroutine */ int xerbla_(char *, integer *); #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0 || *n > *m) { *info = -2; } else if (*k < 0 || *k > *n) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("SORG2L", &i__1); return 0; } /* Quick return if possible */ if (*n <= 0) { return 0; } /* Initialise columns 1:n-k to columns of the unit matrix */ i__1 = *n - *k; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (l = 1; l <= i__2; ++l) { a_ref(l, j) = 0.f; /* L10: */ } a_ref(*m - *n + j, j) = 1.f; /* L20: */ } i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { ii = *n - *k + i__; /* Apply H(i) to A(1:m-k+i,1:n-k+i) from the left */ a_ref(*m - *n + ii, ii) = 1.f; i__2 = *m - *n + ii; i__3 = ii - 1; slarf_("Left", &i__2, &i__3, &a_ref(1, ii), &c__1, &tau[i__], &a[ a_offset], lda, &work[1]); i__2 = *m - *n + ii - 1; r__1 = -tau[i__]; sscal_(&i__2, &r__1, &a_ref(1, ii), &c__1); a_ref(*m - *n + ii, ii) = 1.f - tau[i__]; /* Set A(m-k+i+1:m,n-k+i) to zero */ i__2 = *m; for (l = *m - *n + ii + 1; l <= i__2; ++l) { a_ref(l, ii) = 0.f; /* L30: */ } /* L40: */ } return 0; /* End of SORG2L */ } /* sorg2l_ */ #undef a_ref .