#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int clarrv_(integer *n, real *d__, real *l, integer *isplit, integer *m, real *w, integer *iblock, real *gersch, real *tol, complex *z__, integer *ldz, integer *isuppz, real *work, integer * iwork, integer *info) { /* -- LAPACK auxiliary routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= CLARRV computes the eigenvectors of the tridiagonal matrix T = L D L^T given L, D and the eigenvalues of L D L^T. The input eigenvalues should have high relative accuracy with respect to the entries of L and D. The desired accuracy of the output can be specified by the input parameter TOL. Arguments ========= N (input) INTEGER The order of the matrix. N >= 0. D (input/output) REAL array, dimension (N) On entry, the n diagonal elements of the diagonal matrix D. On exit, D may be overwritten. L (input/output) REAL array, dimension (N-1) On entry, the (n-1) subdiagonal elements of the unit bidiagonal matrix L in elements 1 to N-1 of L. L(N) need not be set. On exit, L is overwritten. ISPLIT (input) INTEGER array, dimension (N) The splitting points, at which T breaks up into submatrices. The first submatrix consists of rows/columns 1 to ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 through ISPLIT( 2 ), etc. TOL (input) REAL The absolute error tolerance for the eigenvalues/eigenvectors. Errors in the input eigenvalues must be bounded by TOL. The eigenvectors output have residual norms bounded by TOL, and the dot products between different eigenvectors are bounded by TOL. TOL must be at least N*EPS*|T|, where EPS is the machine precision and |T| is the 1-norm of the tridiagonal matrix. M (input) INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. W (input) REAL array, dimension (N) The first M elements of W contain the eigenvalues for which eigenvectors are to be computed. The eigenvalues should be grouped by split-off block and ordered from smallest to largest within the block ( The output array W from SLARRE is expected here ). Errors in W must be bounded by TOL (see above). IBLOCK (input) INTEGER array, dimension (N) The submatrix indices associated with the corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to the first submatrix from the top, =2 if W(i) belongs to the second submatrix, etc. Z (output) COMPLEX array, dimension (LDZ, max(1,M) ) If JOBZ = 'V', then if INFO = 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix T corresponding to the selected eigenvalues, with the i-th column of Z holding the eigenvector associated with W(i). If JOBZ = 'N', then Z is not referenced. Note: the user must ensure that at least max(1,M) columns are supplied in the array Z; if RANGE = 'V', the exact value of M is not known in advance and an upper bound must be used. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) ) The support of the eigenvectors in Z, i.e., the indices indicating the nonzero elements in Z. The i-th eigenvector is nonzero only in elements ISUPPZ( 2*i-1 ) through ISUPPZ( 2*i ). WORK (workspace) REAL array, dimension (13*N) IWORK (workspace) INTEGER array, dimension (6*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = 1, internal error in SLARRB if INFO = 2, internal error in CSTEIN Further Details =============== Based on contributions by Inderjit Dhillon, IBM Almaden, USA Osni Marques, LBNL/NERSC, USA Ken Stanley, Computer Science Division, University of California at Berkeley, USA ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static integer c__1 = 1; /* System generated locals */ integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6; real r__1, r__2; complex q__1, q__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static integer iend, jblk, iter, temp[1], ktot, itmp1, itmp2, i__, j, k, p, q, indld; static real sigma; static integer ndone, iinfo, iindr; static real resid; extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer *, complex *, integer *); static integer nclus; extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, integer *, complex *, integer *), scopy_(integer *, real *, integer *, real *, integer *); static integer iindc1, iindc2, indin1, indin2; extern /* Subroutine */ int clar1v_(integer *, integer *, integer *, real *, real *, real *, real *, real *, real *, complex *, real *, real *, integer *, integer *, real *); extern doublereal scnrm2_(integer *, complex *, integer *); static real lambda; static integer im, in, ibegin, indgap, indlld; extern doublereal slamch_(char *); static real mingma; extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer *); static integer oldien, oldncl; static real relgap; extern /* Subroutine */ int claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); static integer oldcls, ndepth, inderr, iindwk; extern /* Subroutine */ int cstein_(integer *, real *, real *, integer *, real *, integer *, integer *, complex *, integer *, real *, integer *, integer *, integer *), slarrb_(integer *, real *, real *, real *, real *, integer *, integer *, real *, real *, real *, real *, real *, real *, integer *, integer *); static logical mgscls; static integer lsbdpt, newcls, oldfst; static real minrgp; static integer indwrk; extern /* Subroutine */ int slarrf_(integer *, real *, real *, real *, real *, integer *, integer *, real *, real *, real *, real *, integer *, integer *); static integer oldlst; static real reltol; static integer maxitr, newfrs, newftt; static real mgstol; static integer nsplit; static real nrminv, rqcorr; static integer newlst, newsiz; static real gap, eps, ztz, tmp1; #define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1 #define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)] --d__; --l; --isplit; --w; --iblock; --gersch; z_dim1 = *ldz; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; --isuppz; --work; --iwork; /* Function Body */ inderr = *n + 1; indld = *n << 1; indlld = *n * 3; indgap = *n << 2; indin1 = *n * 5 + 1; indin2 = *n * 6 + 1; indwrk = *n * 7 + 1; iindr = *n; iindc1 = *n << 1; iindc2 = *n * 3; iindwk = (*n << 2) + 1; eps = slamch_("Precision"); i__1 = *n << 1; for (i__ = 1; i__ <= i__1; ++i__) { iwork[i__] = 0; /* L10: */ } i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { work[inderr + i__ - 1] = eps * (r__1 = w[i__], dabs(r__1)); /* L20: */ } claset_("Full", n, n, &c_b1, &c_b1, &z__[z_offset], ldz); mgstol = eps * 5.f; nsplit = iblock[*m]; ibegin = 1; i__1 = nsplit; for (jblk = 1; jblk <= i__1; ++jblk) { iend = isplit[jblk]; /* Find the eigenvectors of the submatrix indexed IBEGIN through IEND. */ if (ibegin == iend) { i__2 = z___subscr(ibegin, ibegin); z__[i__2].r = 1.f, z__[i__2].i = 0.f; isuppz[(ibegin << 1) - 1] = ibegin; isuppz[ibegin * 2] = ibegin; ibegin = iend + 1; goto L170; } oldien = ibegin - 1; in = iend - oldien; /* Computing MIN */ r__1 = .01f, r__2 = 1.f / (real) in; reltol = dmin(r__1,r__2); im = in; scopy_(&im, &w[ibegin], &c__1, &work[1], &c__1); i__2 = in - 1; for (i__ = 1; i__ <= i__2; ++i__) { work[indgap + i__] = work[i__ + 1] - work[i__]; /* L30: */ } /* Computing MAX */ r__2 = (r__1 = work[in], dabs(r__1)); work[indgap + in] = dmax(r__2,eps); ndone = 0; ndepth = 0; lsbdpt = 1; nclus = 1; iwork[iindc1 + 1] = 1; iwork[iindc1 + 2] = in; /* While( NDONE.LT.IM ) do */ L40: if (ndone < im) { oldncl = nclus; nclus = 0; lsbdpt = 1 - lsbdpt; i__2 = oldncl; for (i__ = 1; i__ <= i__2; ++i__) { if (lsbdpt == 0) { oldcls = iindc1; newcls = iindc2; } else { oldcls = iindc2; newcls = iindc1; } /* If NDEPTH > 1, retrieve the relatively robust representation (RRR) and perform limited bisection (if necessary) to get approximate eigenvalues. */ j = oldcls + (i__ << 1); oldfst = iwork[j - 1]; oldlst = iwork[j]; if (ndepth > 0) { j = oldien + oldfst; i__3 = in; for (k = 1; k <= i__3; ++k) { i__4 = z___subscr(ibegin + k - 1, oldien + oldfst); d__[ibegin + k - 1] = z__[i__4].r; i__4 = z___subscr(ibegin + k - 1, oldien + oldfst + 1) ; l[ibegin + k - 1] = z__[i__4].r; /* L45: */ } sigma = l[iend]; } k = ibegin; i__3 = in - 1; for (j = 1; j <= i__3; ++j) { work[indld + j] = d__[k] * l[k]; work[indlld + j] = work[indld + j] * l[k]; ++k; /* L50: */ } if (ndepth > 0) { slarrb_(&in, &d__[ibegin], &l[ibegin], &work[indld + 1], & work[indlld + 1], &oldfst, &oldlst, &sigma, & reltol, &work[1], &work[indgap + 1], &work[inderr] , &work[indwrk], &iwork[iindwk], &iinfo); if (iinfo != 0) { *info = 1; return 0; } } /* Classify eigenvalues of the current representation (RRR) as (i) isolated, (ii) loosely clustered or (iii) tightly clustered */ newfrs = oldfst; i__3 = oldlst; for (j = oldfst; j <= i__3; ++j) { if (j == oldlst || work[indgap + j] >= reltol * (r__1 = work[j], dabs(r__1))) { newlst = j; } else { /* continue (to the next loop) */ relgap = work[indgap + j] / (r__1 = work[j], dabs( r__1)); if (j == newfrs) { minrgp = relgap; } else { minrgp = dmin(minrgp,relgap); } goto L140; } newsiz = newlst - newfrs + 1; maxitr = 10; newftt = oldien + newfrs; if (newsiz > 1) { mgscls = newsiz <= 20 && minrgp >= mgstol; if (! mgscls) { i__4 = in; for (k = 1; k <= i__4; ++k) { i__5 = z___subscr(ibegin + k - 1, newftt); work[indin1 + k - 1] = z__[i__5].r; i__5 = z___subscr(ibegin + k - 1, newftt + 1); work[indin2 + k - 1] = z__[i__5].r; /* L55: */ } slarrf_(&in, &d__[ibegin], &l[ibegin], &work[ indld + 1], &work[indlld + 1], &newfrs, & newlst, &work[1], &work[indin1], &work[ indin2], &work[indwrk], &iwork[iindwk], info); if (*info == 0) { ++nclus; k = newcls + (nclus << 1); iwork[k - 1] = newfrs; iwork[k] = newlst; } else { *info = 0; if (minrgp >= mgstol) { mgscls = TRUE_; } else { /* Call CSTEIN to process this tight cluster. This happens only if MINRGP <= MGSTOL and SLARRF returns INFO = 1. The latter means that a new RRR to "break" the cluster could not be found. */ work[indwrk] = d__[ibegin]; i__4 = in - 1; for (k = 1; k <= i__4; ++k) { work[indwrk + k] = d__[ibegin + k] + work[indlld + k]; /* L60: */ } i__4 = newsiz; for (k = 1; k <= i__4; ++k) { iwork[iindwk + k - 1] = 1; /* L70: */ } i__4 = newlst; for (k = newfrs; k <= i__4; ++k) { isuppz[(ibegin + k << 1) - 3] = 1; isuppz[(ibegin + k << 1) - 2] = in; /* L80: */ } temp[0] = in; cstein_(&in, &work[indwrk], &work[indld + 1], &newsiz, &work[newfrs], & iwork[iindwk], temp, &z___ref( ibegin, newftt), ldz, &work[ indwrk + in], &iwork[iindwk + in], &iwork[iindwk + (in << 1)], & iinfo); if (iinfo != 0) { *info = 2; return 0; } ndone += newsiz; } } } } else { mgscls = FALSE_; } if (newsiz == 1 || mgscls) { ktot = newftt; i__4 = newlst; for (k = newfrs; k <= i__4; ++k) { iter = 0; L90: lambda = work[k]; clar1v_(&in, &c__1, &in, &lambda, &d__[ibegin], & l[ibegin], &work[indld + 1], &work[indlld + 1], &gersch[(oldien << 1) + 1], & z___ref(ibegin, ktot), &ztz, &mingma, & iwork[iindr + ktot], &isuppz[(ktot << 1) - 1], &work[indwrk]); tmp1 = 1.f / ztz; nrminv = sqrt(tmp1); resid = dabs(mingma) * nrminv; rqcorr = mingma * tmp1; if (k == in) { gap = work[indgap + k - 1]; } else if (k == 1) { gap = work[indgap + k]; } else { /* Computing MIN */ r__1 = work[indgap + k - 1], r__2 = work[ indgap + k]; gap = dmin(r__1,r__2); } ++iter; if (resid > *tol * gap && dabs(rqcorr) > eps * 4.f * dabs(lambda)) { work[k] = lambda + rqcorr; if (iter < maxitr) { goto L90; } } iwork[ktot] = 1; if (newsiz == 1) { ++ndone; } csscal_(&in, &nrminv, &z___ref(ibegin, ktot), & c__1); ++ktot; /* L100: */ } if (newsiz > 1) { itmp1 = isuppz[(newftt << 1) - 1]; itmp2 = isuppz[newftt * 2]; ktot = oldien + newlst; i__4 = ktot; for (p = newftt + 1; p <= i__4; ++p) { i__5 = p - 1; for (q = newftt; q <= i__5; ++q) { cdotu_(&q__2, &in, &z___ref(ibegin, p), & c__1, &z___ref(ibegin, q), &c__1); q__1.r = -q__2.r, q__1.i = -q__2.i; tmp1 = q__1.r; q__1.r = tmp1, q__1.i = 0.f; caxpy_(&in, &q__1, &z___ref(ibegin, q), & c__1, &z___ref(ibegin, p), &c__1); /* L110: */ } tmp1 = 1.f / scnrm2_(&in, &z___ref(ibegin, p), &c__1); csscal_(&in, &tmp1, &z___ref(ibegin, p), & c__1); /* Computing MIN */ i__5 = itmp1, i__6 = isuppz[(p << 1) - 1]; itmp1 = min(i__5,i__6); /* Computing MAX */ i__5 = itmp2, i__6 = isuppz[p * 2]; itmp2 = max(i__5,i__6); /* L120: */ } i__4 = ktot; for (p = newftt; p <= i__4; ++p) { isuppz[(p << 1) - 1] = itmp1; isuppz[p * 2] = itmp2; /* L130: */ } ndone += newsiz; } } newfrs = j + 1; L140: ; } /* L150: */ } ++ndepth; goto L40; } j = ibegin << 1; i__2 = iend; for (i__ = ibegin; i__ <= i__2; ++i__) { isuppz[j - 1] += oldien; isuppz[j] += oldien; j += 2; /* L160: */ } ibegin = iend + 1; L170: ; } return 0; /* End of CLARRV */ } /* clarrv_ */ #undef z___ref #undef z___subscr .