#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int slatrd_(char *uplo, integer *n, integer *nb, real *a, integer *lda, real *e, real *tau, real *w, integer *ldw) { /* -- LAPACK auxiliary routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University October 31, 1992 Purpose ======= SLATRD reduces NB rows and columns of a real symmetric matrix A to symmetric tridiagonal form by an orthogonal similarity transformation Q' * A * Q, and returns the matrices V and W which are needed to apply the transformation to the unreduced part of A. If UPLO = 'U', SLATRD reduces the last NB rows and columns of a matrix, of which the upper triangle is supplied; if UPLO = 'L', SLATRD reduces the first NB rows and columns of a matrix, of which the lower triangle is supplied. This is an auxiliary routine called by SSYTRD. Arguments ========= UPLO (input) CHARACTER Specifies whether the upper or lower triangular part of the symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N (input) INTEGER The order of the matrix A. NB (input) INTEGER The number of rows and columns to be reduced. A (input/output) REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit: if UPLO = 'U', the last NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements above the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = 'L', the first NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements below the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. LDA (input) INTEGER The leading dimension of the array A. LDA >= (1,N). E (output) REAL array, dimension (N-1) If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal elements of the last NB columns of the reduced matrix; if UPLO = 'L', E(1:nb) contains the subdiagonal elements of the first NB columns of the reduced matrix. TAU (output) REAL array, dimension (N-1) The scalar factors of the elementary reflectors, stored in TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. See Further Details. W (output) REAL array, dimension (LDW,NB) The n-by-nb matrix W required to update the unreduced part of A. LDW (input) INTEGER The leading dimension of the array W. LDW >= max(1,N). Further Details =============== If UPLO = 'U', the matrix Q is represented as a product of elementary reflectors Q = H(n) H(n-1) . . . H(n-nb+1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), and tau in TAU(i-1). If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), and tau in TAU(i). The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to apply the transformation to the unreduced part of the matrix, using a symmetric rank-2k update of the form: A := A - V*W' - W*V'. The contents of A on exit are illustrated by the following examples with n = 5 and nb = 2: if UPLO = 'U': if UPLO = 'L': ( a a a v4 v5 ) ( d ) ( a a v4 v5 ) ( 1 d ) ( a 1 v5 ) ( v1 1 a ) ( d 1 ) ( v1 v2 a a ) ( d ) ( v1 v2 a a a ) where d denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and vi denotes an element of the vector defining H(i). ===================================================================== Quick return if possible Parameter adjustments */ /* Table of constant values */ static real c_b5 = -1.f; static real c_b6 = 1.f; static integer c__1 = 1; static real c_b16 = 0.f; /* System generated locals */ integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3; /* Local variables */ extern doublereal sdot_(integer *, real *, integer *, real *, integer *); static integer i__; static real alpha; extern logical lsame_(char *, char *); extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *), saxpy_( integer *, real *, real *, integer *, real *, integer *), ssymv_( char *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static integer iw; extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *, real *); #define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1] #define w_ref(a_1,a_2) w[(a_2)*w_dim1 + a_1] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --e; --tau; w_dim1 = *ldw; w_offset = 1 + w_dim1 * 1; w -= w_offset; /* Function Body */ if (*n <= 0) { return 0; } if (lsame_(uplo, "U")) { /* Reduce last NB columns of upper triangle */ i__1 = *n - *nb + 1; for (i__ = *n; i__ >= i__1; --i__) { iw = i__ - *n + *nb; if (i__ < *n) { /* Update A(1:i,i) */ i__2 = *n - i__; sgemv_("No transpose", &i__, &i__2, &c_b5, &a_ref(1, i__ + 1), lda, &w_ref(i__, iw + 1), ldw, &c_b6, &a_ref(1, i__), &c__1); i__2 = *n - i__; sgemv_("No transpose", &i__, &i__2, &c_b5, &w_ref(1, iw + 1), ldw, &a_ref(i__, i__ + 1), lda, &c_b6, &a_ref(1, i__), &c__1); } if (i__ > 1) { /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */ i__2 = i__ - 1; slarfg_(&i__2, &a_ref(i__ - 1, i__), &a_ref(1, i__), &c__1, & tau[i__ - 1]); e[i__ - 1] = a_ref(i__ - 1, i__); a_ref(i__ - 1, i__) = 1.f; /* Compute W(1:i-1,i) */ i__2 = i__ - 1; ssymv_("Upper", &i__2, &c_b6, &a[a_offset], lda, &a_ref(1, i__), &c__1, &c_b16, &w_ref(1, iw), &c__1); if (i__ < *n) { i__2 = i__ - 1; i__3 = *n - i__; sgemv_("Transpose", &i__2, &i__3, &c_b6, &w_ref(1, iw + 1) , ldw, &a_ref(1, i__), &c__1, &c_b16, &w_ref(i__ + 1, iw), &c__1); i__2 = i__ - 1; i__3 = *n - i__; sgemv_("No transpose", &i__2, &i__3, &c_b5, &a_ref(1, i__ + 1), lda, &w_ref(i__ + 1, iw), &c__1, &c_b6, & w_ref(1, iw), &c__1); i__2 = i__ - 1; i__3 = *n - i__; sgemv_("Transpose", &i__2, &i__3, &c_b6, &a_ref(1, i__ + 1), lda, &a_ref(1, i__), &c__1, &c_b16, &w_ref( i__ + 1, iw), &c__1); i__2 = i__ - 1; i__3 = *n - i__; sgemv_("No transpose", &i__2, &i__3, &c_b5, &w_ref(1, iw + 1), ldw, &w_ref(i__ + 1, iw), &c__1, &c_b6, & w_ref(1, iw), &c__1); } i__2 = i__ - 1; sscal_(&i__2, &tau[i__ - 1], &w_ref(1, iw), &c__1); i__2 = i__ - 1; alpha = tau[i__ - 1] * -.5f * sdot_(&i__2, &w_ref(1, iw), & c__1, &a_ref(1, i__), &c__1); i__2 = i__ - 1; saxpy_(&i__2, &alpha, &a_ref(1, i__), &c__1, &w_ref(1, iw), & c__1); } /* L10: */ } } else { /* Reduce first NB columns of lower triangle */ i__1 = *nb; for (i__ = 1; i__ <= i__1; ++i__) { /* Update A(i:n,i) */ i__2 = *n - i__ + 1; i__3 = i__ - 1; sgemv_("No transpose", &i__2, &i__3, &c_b5, &a_ref(i__, 1), lda, & w_ref(i__, 1), ldw, &c_b6, &a_ref(i__, i__), &c__1); i__2 = *n - i__ + 1; i__3 = i__ - 1; sgemv_("No transpose", &i__2, &i__3, &c_b5, &w_ref(i__, 1), ldw, & a_ref(i__, 1), lda, &c_b6, &a_ref(i__, i__), &c__1); if (i__ < *n) { /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) Computing MIN */ i__2 = i__ + 2; i__3 = *n - i__; slarfg_(&i__3, &a_ref(i__ + 1, i__), &a_ref(min(i__2,*n), i__) , &c__1, &tau[i__]); e[i__] = a_ref(i__ + 1, i__); a_ref(i__ + 1, i__) = 1.f; /* Compute W(i+1:n,i) */ i__2 = *n - i__; ssymv_("Lower", &i__2, &c_b6, &a_ref(i__ + 1, i__ + 1), lda, & a_ref(i__ + 1, i__), &c__1, &c_b16, &w_ref(i__ + 1, i__), &c__1); i__2 = *n - i__; i__3 = i__ - 1; sgemv_("Transpose", &i__2, &i__3, &c_b6, &w_ref(i__ + 1, 1), ldw, &a_ref(i__ + 1, i__), &c__1, &c_b16, &w_ref(1, i__), &c__1); i__2 = *n - i__; i__3 = i__ - 1; sgemv_("No transpose", &i__2, &i__3, &c_b5, &a_ref(i__ + 1, 1) , lda, &w_ref(1, i__), &c__1, &c_b6, &w_ref(i__ + 1, i__), &c__1); i__2 = *n - i__; i__3 = i__ - 1; sgemv_("Transpose", &i__2, &i__3, &c_b6, &a_ref(i__ + 1, 1), lda, &a_ref(i__ + 1, i__), &c__1, &c_b16, &w_ref(1, i__), &c__1); i__2 = *n - i__; i__3 = i__ - 1; sgemv_("No transpose", &i__2, &i__3, &c_b5, &w_ref(i__ + 1, 1) , ldw, &w_ref(1, i__), &c__1, &c_b6, &w_ref(i__ + 1, i__), &c__1); i__2 = *n - i__; sscal_(&i__2, &tau[i__], &w_ref(i__ + 1, i__), &c__1); i__2 = *n - i__; alpha = tau[i__] * -.5f * sdot_(&i__2, &w_ref(i__ + 1, i__), & c__1, &a_ref(i__ + 1, i__), &c__1); i__2 = *n - i__; saxpy_(&i__2, &alpha, &a_ref(i__ + 1, i__), &c__1, &w_ref(i__ + 1, i__), &c__1); } /* L20: */ } } return 0; /* End of SLATRD */ } /* slatrd_ */ #undef w_ref #undef a_ref .