#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int sgtts2_(integer *itrans, integer *n, integer *nrhs, real *dl, real *d__, real *du, real *du2, integer *ipiv, real *b, integer * ldb) { /* -- LAPACK auxiliary routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= SGTTS2 solves one of the systems of equations A*X = B or A'*X = B, with a tridiagonal matrix A using the LU factorization computed by SGTTRF. Arguments ========= ITRANS (input) INTEGER Specifies the form of the system of equations. = 0: A * X = B (No transpose) = 1: A'* X = B (Transpose) = 2: A'* X = B (Conjugate transpose = Transpose) N (input) INTEGER The order of the matrix A. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. DL (input) REAL array, dimension (N-1) The (n-1) multipliers that define the matrix L from the LU factorization of A. D (input) REAL array, dimension (N) The n diagonal elements of the upper triangular matrix U from the LU factorization of A. DU (input) REAL array, dimension (N-1) The (n-1) elements of the first super-diagonal of U. DU2 (input) REAL array, dimension (N-2) The (n-2) elements of the second super-diagonal of U. IPIV (input) INTEGER array, dimension (N) The pivot indices; for 1 <= i <= n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required. B (input/output) REAL array, dimension (LDB,NRHS) On entry, the matrix of right hand side vectors B. On exit, B is overwritten by the solution vectors X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). ===================================================================== Quick return if possible Parameter adjustments */ /* System generated locals */ integer b_dim1, b_offset, i__1, i__2; /* Local variables */ static real temp; static integer i__, j, ip; #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] --dl; --d__; --du; --du2; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; /* Function Body */ if (*n == 0 || *nrhs == 0) { return 0; } if (*itrans == 0) { /* Solve A*X = B using the LU factorization of A, overwriting each right hand side vector with its solution. */ if (*nrhs <= 1) { j = 1; L10: /* Solve L*x = b. */ i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { ip = ipiv[i__]; temp = b_ref(i__ + 1 - ip + i__, j) - dl[i__] * b_ref(ip, j); b_ref(i__, j) = b_ref(ip, j); b_ref(i__ + 1, j) = temp; /* L20: */ } /* Solve U*x = b. */ b_ref(*n, j) = b_ref(*n, j) / d__[*n]; if (*n > 1) { b_ref(*n - 1, j) = (b_ref(*n - 1, j) - du[*n - 1] * b_ref(*n, j)) / d__[*n - 1]; } for (i__ = *n - 2; i__ >= 1; --i__) { b_ref(i__, j) = (b_ref(i__, j) - du[i__] * b_ref(i__ + 1, j) - du2[i__] * b_ref(i__ + 2, j)) / d__[i__]; /* L30: */ } if (j < *nrhs) { ++j; goto L10; } } else { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { /* Solve L*x = b. */ i__2 = *n - 1; for (i__ = 1; i__ <= i__2; ++i__) { if (ipiv[i__] == i__) { b_ref(i__ + 1, j) = b_ref(i__ + 1, j) - dl[i__] * b_ref(i__, j); } else { temp = b_ref(i__, j); b_ref(i__, j) = b_ref(i__ + 1, j); b_ref(i__ + 1, j) = temp - dl[i__] * b_ref(i__, j); } /* L40: */ } /* Solve U*x = b. */ b_ref(*n, j) = b_ref(*n, j) / d__[*n]; if (*n > 1) { b_ref(*n - 1, j) = (b_ref(*n - 1, j) - du[*n - 1] * b_ref( *n, j)) / d__[*n - 1]; } for (i__ = *n - 2; i__ >= 1; --i__) { b_ref(i__, j) = (b_ref(i__, j) - du[i__] * b_ref(i__ + 1, j) - du2[i__] * b_ref(i__ + 2, j)) / d__[i__]; /* L50: */ } /* L60: */ } } } else { /* Solve A' * X = B. */ if (*nrhs <= 1) { /* Solve U'*x = b. */ j = 1; L70: b_ref(1, j) = b_ref(1, j) / d__[1]; if (*n > 1) { b_ref(2, j) = (b_ref(2, j) - du[1] * b_ref(1, j)) / d__[2]; } i__1 = *n; for (i__ = 3; i__ <= i__1; ++i__) { b_ref(i__, j) = (b_ref(i__, j) - du[i__ - 1] * b_ref(i__ - 1, j) - du2[i__ - 2] * b_ref(i__ - 2, j)) / d__[i__]; /* L80: */ } /* Solve L'*x = b. */ for (i__ = *n - 1; i__ >= 1; --i__) { ip = ipiv[i__]; temp = b_ref(i__, j) - dl[i__] * b_ref(i__ + 1, j); b_ref(i__, j) = b_ref(ip, j); b_ref(ip, j) = temp; /* L90: */ } if (j < *nrhs) { ++j; goto L70; } } else { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { /* Solve U'*x = b. */ b_ref(1, j) = b_ref(1, j) / d__[1]; if (*n > 1) { b_ref(2, j) = (b_ref(2, j) - du[1] * b_ref(1, j)) / d__[2] ; } i__2 = *n; for (i__ = 3; i__ <= i__2; ++i__) { b_ref(i__, j) = (b_ref(i__, j) - du[i__ - 1] * b_ref(i__ - 1, j) - du2[i__ - 2] * b_ref(i__ - 2, j)) / d__[ i__]; /* L100: */ } for (i__ = *n - 1; i__ >= 1; --i__) { if (ipiv[i__] == i__) { b_ref(i__, j) = b_ref(i__, j) - dl[i__] * b_ref(i__ + 1, j); } else { temp = b_ref(i__ + 1, j); b_ref(i__ + 1, j) = b_ref(i__, j) - dl[i__] * temp; b_ref(i__, j) = temp; } /* L110: */ } /* L120: */ } } } /* End of SGTTS2 */ return 0; } /* sgtts2_ */ #undef b_ref .