#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int dptts2_(integer *n, integer *nrhs, doublereal *d__, doublereal *e, doublereal *b, integer *ldb) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= DPTTS2 solves a tridiagonal system of the form A * X = B using the L*D*L' factorization of A computed by DPTTRF. D is a diagonal matrix specified in the vector D, L is a unit bidiagonal matrix whose subdiagonal is specified in the vector E, and X and B are N by NRHS matrices. Arguments ========= N (input) INTEGER The order of the tridiagonal matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. D (input) DOUBLE PRECISION array, dimension (N) The n diagonal elements of the diagonal matrix D from the L*D*L' factorization of A. E (input) DOUBLE PRECISION array, dimension (N-1) The (n-1) subdiagonal elements of the unit bidiagonal factor L from the L*D*L' factorization of A. E can also be regarded as the superdiagonal of the unit bidiagonal factor U from the factorization A = U'*D*U. B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the right hand side vectors B for the system of linear equations. On exit, the solution vectors, X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). ===================================================================== Quick return if possible Parameter adjustments */ /* System generated locals */ integer b_dim1, b_offset, i__1, i__2; doublereal d__1; /* Local variables */ static integer i__, j; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); #define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1] --d__; --e; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; /* Function Body */ if (*n <= 1) { if (*n == 1) { d__1 = 1. / d__[1]; dscal_(nrhs, &d__1, &b[b_offset], ldb); } return 0; } /* Solve A * X = B using the factorization A = L*D*L', overwriting each right hand side vector with its solution. */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { /* Solve L * x = b. */ i__2 = *n; for (i__ = 2; i__ <= i__2; ++i__) { b_ref(i__, j) = b_ref(i__, j) - b_ref(i__ - 1, j) * e[i__ - 1]; /* L10: */ } /* Solve D * L' * x = b. */ b_ref(*n, j) = b_ref(*n, j) / d__[*n]; for (i__ = *n - 1; i__ >= 1; --i__) { b_ref(i__, j) = b_ref(i__, j) / d__[i__] - b_ref(i__ + 1, j) * e[ i__]; /* L20: */ } /* L30: */ } return 0; /* End of DPTTS2 */ } /* dptts2_ */ #undef b_ref .