#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int dlaed5_(integer *i__, doublereal *d__, doublereal *z__, doublereal *delta, doublereal *rho, doublereal *dlam) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab, Courant Institute, NAG Ltd., and Rice University September 30, 1994 Purpose ======= This subroutine computes the I-th eigenvalue of a symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) + RHO * Z * transpose(Z) . The diagonal elements in the array D are assumed to satisfy D(i) < D(j) for i < j . We also assume RHO > 0 and that the Euclidean norm of the vector Z is one. Arguments ========= I (input) INTEGER The index of the eigenvalue to be computed. I = 1 or I = 2. D (input) DOUBLE PRECISION array, dimension (2) The original eigenvalues. We assume D(1) < D(2). Z (input) DOUBLE PRECISION array, dimension (2) The components of the updating vector. DELTA (output) DOUBLE PRECISION array, dimension (2) The vector DELTA contains the information necessary to construct the eigenvectors. RHO (input) DOUBLE PRECISION The scalar in the symmetric updating formula. DLAM (output) DOUBLE PRECISION The computed lambda_I, the I-th updated eigenvalue. Further Details =============== Based on contributions by Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA ===================================================================== Parameter adjustments */ /* System generated locals */ doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static doublereal temp, b, c__, w, del, tau; --delta; --z__; --d__; /* Function Body */ del = d__[2] - d__[1]; if (*i__ == 1) { w = *rho * 2. * (z__[2] * z__[2] - z__[1] * z__[1]) / del + 1.; if (w > 0.) { b = del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]); c__ = *rho * z__[1] * z__[1] * del; /* B > ZERO, always */ tau = c__ * 2. / (b + sqrt((d__1 = b * b - c__ * 4., abs(d__1)))); *dlam = d__[1] + tau; delta[1] = -z__[1] / tau; delta[2] = z__[2] / (del - tau); } else { b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]); c__ = *rho * z__[2] * z__[2] * del; if (b > 0.) { tau = c__ * -2. / (b + sqrt(b * b + c__ * 4.)); } else { tau = (b - sqrt(b * b + c__ * 4.)) / 2.; } *dlam = d__[2] + tau; delta[1] = -z__[1] / (del + tau); delta[2] = -z__[2] / tau; } temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]); delta[1] /= temp; delta[2] /= temp; } else { /* Now I=2 */ b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]); c__ = *rho * z__[2] * z__[2] * del; if (b > 0.) { tau = (b + sqrt(b * b + c__ * 4.)) / 2.; } else { tau = c__ * 2. / (-b + sqrt(b * b + c__ * 4.)); } *dlam = d__[2] + tau; delta[1] = -z__[1] / (del + tau); delta[2] = -z__[2] / tau; temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]); delta[1] /= temp; delta[2] /= temp; } return 0; /* End OF DLAED5 */ } /* dlaed5_ */ .