double precision a(1001,1000),b(1000),x(1000) double precision time(10,6),cray,ops,total,norma,normx double precision resid,residn,eps,epslon integer ipvt(1000) lda = 1001 c cray = .056 write(6,1) 1 format(' Please send the results of this run to:'// $ ' Jack J. Dongarra'/ $ ' Mathematics and Computer Science Division'/ $ ' Argonne National Laboratory'/ $ ' Argonne, Illinois 60439'// $ ' Telephone: 312-972-7246'// $ ' ARPAnet: DONGARRA@ANL-MCS'/) write(6,80) lda 80 format(' times for array with leading dimension of',i4) write(6,70) 70 format(' order',6x,'dgefa',6x,'dgesl',6x,'total',5x,'mflops', $ 7x,'unit',6x,'residule') c it = 0 do 2 n = 50,1000,50 ops = (2.0d0*n**3)/3.0d0 + 2.0d0*n**2 it = it + 1 call matgen(a,lda,n,b,norma) t1 = second(foo) call dgefa(a,lda,n,ipvt,info) time(it,1) = second(foo) - t1 t1 = second(foo) call dgesl(a,lda,n,ipvt,b,0) time(it,2) = second(foo) - t1 total = time(it,1) + time(it,2) c c compute a residual to verify results. c do 10 i = 1,n x(i) = b(i) 10 continue call matgen(a,lda,n,b,norma) do 20 i = 1,n b(i) = -b(i) 20 continue call dmxpy(n,b,n,lda,x,a) resid = 0.0 normx = 0.0 do 30 i = 1,n resid = dmax1( resid, dabs(b(i)) ) normx = dmax1( normx, dabs(x(i)) ) 30 continue eps = epslon(1.0d0) residn = resid/( n*norma*normx*eps ) c time(it,3) = total if( total .ne. 0.0d0 ) then time(it,4) = ops/(1.0d6*total) time(it,5) = 2.0d0/time(it,4) else time(it,4) = 0.0 time(it,5) = 0.0 endif time(it,6) = residn write(6,110) n,(time(it,i),i=1,6) 110 format(i5,6(1pe11.3)) 2 continue c stop end subroutine matgen(a,lda,n,b,norma) double precision a(lda,1),b(1),norma c init = 1357 norma = 0.0 do 30 j = 1,n do 20 i = 1,n init = mod(1323*init,262144) a(i,j) = (init - 65536.0)/131072.0 norma = dmax1(a(i,j), norma) 20 continue 30 continue do 35 i = 1,n b(i) = 0.0 35 continue do 50 j = 1,n do 40 i = 1,n b(i) = b(i) + a(i,j) 40 continue 50 continue return end subroutine dgefa(a,lda,n,ipvt,info) integer lda,n,ipvt(1),info double precision a(lda,1) c c dgefa factors a double precision matrix by gaussian elimination. c c dgefa is usually called by dgeco, but it can be called c directly with a saving in time if rcond is not needed. c (time for dgeco) = (1 + 9/n)*(time for dgefa) . c c on entry c c a double precision(lda, n) c the matrix to be factored. c c lda integer c the leading dimension of the array a . c c n integer c the order of the matrix a . c c on return c c a an upper triangular matrix and the multipliers c which were used to obtain it. c the factorization can be written a = l*u where c l is a product of permutation and unit lower c triangular matrices and u is upper triangular. c c ipvt integer(n) c an integer vector of pivot indices. c c info integer c = 0 normal value. c = k if u(k,k) .eq. 0.0 . this is not an error c condition for this subroutine, but it does c indicate that dgesl or dgedi will divide by zero c if called. use rcond in dgeco for a reliable c indication of singularity. c c linpack. this version dated 08/14/78 . c cleve moler, university of new mexico, argonne national lab. c c subroutines and functions c c blas daxpy,dscal,idamax c c internal variables c double precision t integer idamax,j,k,kp1,l,nm1 c c c gaussian elimination with partial pivoting c info = 0 nm1 = n - 1 if (nm1 .lt. 1) go to 70 do 60 k = 1, nm1 kp1 = k + 1 c c find l = pivot index c l = idamax(n-k+1,a(k,k),1) + k - 1 ipvt(k) = l c c zero pivot implies this column already triangularized c if (a(l,k) .eq. 0.0d0) go to 40 c c interchange if necessary c if (l .eq. k) go to 10 t = a(l,k) a(l,k) = a(k,k) a(k,k) = t 10 continue c c compute multipliers c t = -1.0d0/a(k,k) call dscal(n-k,t,a(k+1,k),1) c c row elimination with column indexing c do 30 j = kp1, n t = a(l,j) if (l .eq. k) go to 20 a(l,j) = a(k,j) a(k,j) = t 20 continue call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1) 30 continue go to 50 40 continue info = k 50 continue 60 continue 70 continue ipvt(n) = n if (a(n,n) .eq. 0.0d0) info = n return end subroutine dgesl(a,lda,n,ipvt,b,job) integer lda,n,ipvt(1),job double precision a(lda,1),b(1) c c dgesl solves the double precision system c a * x = b or trans(a) * x = b c using the factors computed by dgeco or dgefa. c c on entry c c a double precision(lda, n) c the output from dgeco or dgefa. c c lda integer c the leading dimension of the array a . c c n integer c the order of the matrix a . c c ipvt integer(n) c the pivot vector from dgeco or dgefa. c c b double precision(n) c the right hand side vector. c c job integer c = 0 to solve a*x = b , c = nonzero to solve trans(a)*x = b where c trans(a) is the transpose. c c on return c c b the solution vector x . c c error condition c c a division by zero will occur if the input factor contains a c zero on the diagonal. technically this indicates singularity c but it is often caused by improper arguments or improper c setting of lda . it will not occur if the subroutines are c called correctly and if dgeco has set rcond .gt. 0.0 c or dgefa has set info .eq. 0 . c c to compute inverse(a) * c where c is a matrix c with p columns c call dgeco(a,lda,n,ipvt,rcond,z) c if (rcond is too small) go to ... c do 10 j = 1, p c call dgesl(a,lda,n,ipvt,c(1,j),0) c 10 continue c c linpack. this version dated 08/14/78 . c cleve moler, university of new mexico, argonne national lab. c c subroutines and functions c c blas daxpy,ddot c c internal variables c double precision ddot,t integer k,kb,l,nm1 c nm1 = n - 1 if (job .ne. 0) go to 50 c c job = 0 , solve a * x = b c first solve l*y = b c if (nm1 .lt. 1) go to 30 do 20 k = 1, nm1 l = ipvt(k) t = b(l) if (l .eq. k) go to 10 b(l) = b(k) b(k) = t 10 continue call daxpy(n-k,t,a(k+1,k),1,b(k+1),1) 20 continue 30 continue c c now solve u*x = y c do 40 kb = 1, n k = n + 1 - kb b(k) = b(k)/a(k,k) t = -b(k) call daxpy(k-1,t,a(1,k),1,b(1),1) 40 continue go to 100 50 continue c c job = nonzero, solve trans(a) * x = b c first solve trans(u)*y = b c do 60 k = 1, n t = ddot(k-1,a(1,k),1,b(1),1) b(k) = (b(k) - t)/a(k,k) 60 continue c c now solve trans(l)*x = y c if (nm1 .lt. 1) go to 90 do 80 kb = 1, nm1 k = n - kb b(k) = b(k) + ddot(n-k,a(k+1,k),1,b(k+1),1) l = ipvt(k) if (l .eq. k) go to 70 t = b(l) b(l) = b(k) b(k) = t 70 continue 80 continue 90 continue 100 continue return end double precision function ddot(n,dx,incx,dy,incy) c c forms the dot product of two vectors. c jack dongarra, linpack, 3/11/78. c double precision dx(1),dy(1),dtemp integer i,incx,incy,ix,iy,m,mp1,n c ddot = 0.0d0 dtemp = 0.0d0 if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dtemp = dtemp + dx(ix)*dy(iy) ix = ix + incx iy = iy + incy 10 continue ddot = dtemp return c c code for both increments equal to 1 c 20 continue do 30 i = 1,n dtemp = dtemp + dx(i)*dy(i) 30 continue ddot = dtemp return end subroutine dscal(n,da,dx,incx) c c scales a vector by a constant. c jack dongarra, linpack, 3/11/78. c double precision da,dx(1) integer i,incx,m,mp1,n,nincx c if(n.le.0)return if(incx.eq.1)go to 20 c c code for increment not equal to 1 c nincx = n*incx do 10 i = 1,nincx,incx dx(i) = da*dx(i) 10 continue return c c code for increment equal to 1 c 20 continue do 30 i = 1,n dx(i) = da*dx(i) 30 continue return end integer function idamax(n,dx,incx) c c finds the index of element having max. dabsolute value. c jack dongarra, linpack, 3/11/78. c double precision dx(1),dmax integer i,incx,ix,n c idamax = 0 if( n .lt. 1 ) return idamax = 1 if(n.eq.1)return if(incx.eq.1)go to 20 c c code for increment not equal to 1 c ix = 1 dmax = dabs(dx(1)) ix = ix + incx do 10 i = 2,n if(dabs(dx(ix)).le.dmax) go to 5 idamax = i dmax = dabs(dx(ix)) 5 ix = ix + incx 10 continue return c c code for increment equal to 1 c 20 dmax = dabs(dx(1)) do 30 i = 2,n if(dabs(dx(i)).le.dmax) go to 30 idamax = i dmax = dabs(dx(i)) 30 continue return end double precision function epslon (x) double precision x c c estimate unit roundoff in quantities of size x. c double precision a,b,c,eps c c this program should function properly on all systems c satisfying the following two assumptions, c 1. the base used in representing dfloating point c numbers is not a power of three. c 2. the quantity a in statement 10 is represented to c the accuracy used in dfloating point variables c that are stored in memory. c the statement number 10 and the go to 10 are intended to c force optimizing compilers to generate code satisfying c assumption 2. c under these assumptions, it should be true that, c a is not exactly equal to four-thirds, c b has a zero for its last bit or digit, c c is not exactly equal to one, c eps measures the separation of 1.0 from c the next larger dfloating point number. c the developers of eispack would appreciate being informed c about any systems where these assumptions do not hold. c c ***************************************************************** c this routine is one of the auxiliary routines used by eispack iii c to avoid machine dependencies. c ***************************************************************** c c this version dated 4/6/83. c a = 4.0d0/3.0d0 10 b = a - 1.0d0 c = b + b + b eps = dabs(c-1.0d0) if (eps .eq. 0.0d0) go to 10 epslon = eps*dabs(x) return end subroutine mm (a, lda, n1, n3, b, ldb, n2, c, ldc) double precision a(lda,*), b(ldb,*), c(ldc,*) c c purpose: c multiply matrix b times matrix c and store the result in matrix a. c c parameters: c c a double precision(lda,n3), matrix of n1 rows and n3 columns c c lda integer, leading dimension of array a c c n1 integer, number of rows in matrices a and b c c n3 integer, number of columns in matrices a and c c c b double precision(ldb,n2), matrix of n1 rows and n2 columns c c ldb integer, leading dimension of array b c c n2 integer, number of columns in matrix b, and number of rows in c matrix c c c c double precision(ldc,n3), matrix of n2 rows and n3 columns c c ldc integer, leading dimension of array c c c ---------------------------------------------------------------------- c do 20 j = 1, n3 do 10 i = 1, n1 a(i,j) = 0.0 10 continue call dmxpy (n2,a(1,j),n1,ldb,c(1,j),b) 20 continue c return end subroutine dmxpy (n1, y, n2, ldm, x, m) double precision y(*), x(*), m(ldm,*) c c purpose: c multiply matrix m times vector x and add the result to vector y. c c parameters: c c n1 integer, number of elements in vector y, and number of rows in c matrix m c c y double precision(n1), vector of length n1 to which is added c the product m*x c c n2 integer, number of elements in vector x, and number of columns c in matrix m c c ldm integer, leading dimension of array m c c x double precision(n2), vector of length n2 c c m double precision(ldm,n2), matrix of n1 rows and n2 columns c c ---------------------------------------------------------------------- c c cleanup odd vector c j = mod(n2,2) if (j .ge. 1) then do 10 i = 1, n1 y(i) = (y(i)) + x(j)*m(i,j) 10 continue endif c c cleanup odd group of two vectors c j = mod(n2,4) if (j .ge. 2) then do 20 i = 1, n1 y(i) = ( (y(i)) $ + x(j-1)*m(i,j-1)) + x(j)*m(i,j) 20 continue endif c c cleanup odd group of four vectors c j = mod(n2,8) if (j .ge. 4) then do 30 i = 1, n1 y(i) = ((( (y(i)) $ + x(j-3)*m(i,j-3)) + x(j-2)*m(i,j-2)) $ + x(j-1)*m(i,j-1)) + x(j) *m(i,j) 30 continue endif c c cleanup odd group of eight vectors c j = mod(n2,16) if (j .ge. 8) then do 40 i = 1, n1 y(i) = ((((((( (y(i)) $ + x(j-7)*m(i,j-7)) + x(j-6)*m(i,j-6)) $ + x(j-5)*m(i,j-5)) + x(j-4)*m(i,j-4)) $ + x(j-3)*m(i,j-3)) + x(j-2)*m(i,j-2)) $ + x(j-1)*m(i,j-1)) + x(j) *m(i,j) 40 continue endif c c main loop - groups of sixteen vectors c jmin = j+16 do 60 j = jmin, n2, 16 do 50 i = 1, n1 y(i) = ((((((((((((((( (y(i)) $ + x(j-15)*m(i,j-15)) + x(j-14)*m(i,j-14)) $ + x(j-13)*m(i,j-13)) + x(j-12)*m(i,j-12)) $ + x(j-11)*m(i,j-11)) + x(j-10)*m(i,j-10)) $ + x(j- 9)*m(i,j- 9)) + x(j- 8)*m(i,j- 8)) $ + x(j- 7)*m(i,j- 7)) + x(j- 6)*m(i,j- 6)) $ + x(j- 5)*m(i,j- 5)) + x(j- 4)*m(i,j- 4)) $ + x(j- 3)*m(i,j- 3)) + x(j- 2)*m(i,j- 2)) $ + x(j- 1)*m(i,j- 1)) + x(j) *m(i,j) 50 continue 60 continue return end subroutine daxpy(n,da,dx,incx,dy,incy) c c constant times a vector plus a vector. c jack dongarra, linpack, 3/11/78. c double precision dx(1),dy(1),da integer i,incx,incy,ix,iy,m,mp1,n c if(n.le.0)return if (da .eq. 0.0d0) return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dy(iy) = dy(iy) + da*dx(ix) ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c 20 continue do 30 i = 1,n dy(i) = dy(i) + da*dx(i) 30 continue return end .