Ignoring 3 constraints. I INITIAL X(I) D(I) 1 .250000E+00 .100E+01 2 .500000E+00 .100E+01 3 .750000E+00 .100E+01 IT NF F RELDF PRELDF RELDX STPPAR D*STEP NPRELDF 0 1 .556E-01 1 3 .978E-02 .82E+00 .90E+00 .4E-01 .5E+01 .9E-01 .00E+00 2 4 .570E-03 .94E+00 .12E+01 .3E-01 .0E+00 .7E-01 .12E+01 3 5 .699E-06 .10E+01 .98E+00 .5E-02 .0E+00 .1E-01 .98E+00 4 6 .123E-11 .10E+01 .10E+01 .2E-03 .0E+00 .4E-03 .10E+01 5 7 .382E-23 .10E+01 .10E+01 .2E-06 .0E+00 .6E-06 .10E+01 ***** ABSOLUTE FUNCTION CONVERGENCE ***** FUNCTION .382233E-23 RELDX .244E-06 FUNC. EVALS 7 GRAD. EVALS 6 PRELDF .100E+01 NPRELDF .100E+01 I FINAL X(I) D(I) G(I) 1 .146447E+00 .100E+01 -.521E-11 2 .500000E+00 .100E+01 .000E+00 3 .853553E+00 .100E+01 .521E-11 mnh: Absolute Function Convergence; function = 3.82233440281386e-24 RELDX = 2.44e-07; PRELDF = 1; NPRELDF = 1 7 func. evals; 6 grad. evals .