# choi.mod param M integer >= 1; # subjects or consumers param N integer >= 1; # brand names set subjects := 1 .. M; set brands := 1 .. N; set ingred; param chi >= 0; # randomness increases as chi decreases param K; # constant term in probability function # representing "no purchase" option param x {brands, ingred}; # amount of ingredients param y {subjects, ingred}; # preferences param v {subjects}; # importance weights param w0 {subjects}; # unscaled w values param w{i in subjects} := -chi * w0[i]; # constant in DU eqn param b {subjects}; # constant in DU eqn param c {brands}; # average cost for producing j param DU {i in subjects, j in brands} := -chi * (v[i] * sum {k in ingred} (x[j,k]-y[i,k])^2 + b[i]); param p_lo {j in brands} default c[j]; param p_up {j in brands} default Infinity; var p {j in brands} := c[j] + .01; s.t. mprofit {j in brands}: /* marginal profit for brand j */ p_lo[j] <= p[j] <= p_up[j] complements (-1/M) * sum {i in subjects} ( exp(w[i]*p[j]+DU[i,j]) / ( K + sum {jj in brands} exp(w[i]*p[jj]+DU[i,jj]) ) * (1 + (p[j]-c[j]) * w[i] * ( K + sum {jj in brands:jj != j} exp(w[i]*p[jj]+DU[i,jj]) ) / ( K + sum {jj in brands} exp(w[i]*p[jj]+DU[i,jj]) ) ) ); .