# ---------------------------------------- # STOCHASTIC PROGRAMMING PROBLEM # USING BENDERS DECOMPOSITION # ---------------------------------------- ### SUBPROBLEM FOR EXTREME POINT ### set PROD; # products param T > 0; # number of weeks set SCEN; # number of scenarios param rate {PROD} > 0; # tons per hour produced param avail {1..T} >= 0; # hours available in week param market {PROD,1..T} >= 0; # limit on tons sold in week param prodcost {PROD} >= 0; # cost per ton produced param invcost {PROD} >= 0; # carrying cost/ton of inventory param revenue {PROD,1..T,SCEN} >= 0; # projected revenue/ton param prob {SCEN} >= 0, <= 1; check: 0.99999 < sum {s in SCEN} prob[s] < 1.00001; param inv1 {PROD} >= 0; # inventory at end of first period var Make {PROD,2..T,SCEN} >= 0; # tons produced var Inv {PROD,2..T,SCEN} >= 0; # tons inventoried var Sell {p in PROD, t in 2..T, SCEN} # tons sold >= 0, <= market[p,t]; maximize Stage2_Profit: sum {s in SCEN} prob[s] * sum {p in PROD, t in 2..T} (revenue[p,t,s]*Sell[p,t,s] - prodcost[p]*Make[p,t,s] - invcost[p]*Inv[p,t,s]); subject to Time {t in 2..T, s in SCEN}: sum {p in PROD} (1/rate[p]) * Make[p,t,s] <= avail[t]; subject to Balance2 {p in PROD, s in SCEN}: Make[p,2,s] + inv1[p] = Sell[p,2,s] + Inv[p,2,s]; subject to Balance {p in PROD, t in 3..T, s in SCEN}: Make[p,t,s] + Inv[p,t-1,s] = Sell[p,t,s] + Inv[p,t,s]; ### MASTER PROBLEM ### param inv0 {PROD} >= 0; # initial inventory param nCUT >= 0 integer; param cut_type {1..nCUT} symbolic within {"point","ray"}; param time_price {2..T,SCEN,1..nCUT} >= -0.000001; param bal2_price {PROD,SCEN,1..nCUT}; param sell_lim_price {PROD,2..T,SCEN,1..nCUT} >= -0.000001; var Make1 {PROD} >= 0; var Inv1 {PROD} >= 0; var Sell1 {p in PROD} >= 0, <= market[p,1]; var Min_Stage2_Profit >= 0; maximize Expected_Profit: sum {s in SCEN} prob[s] * sum {p in PROD} (revenue[p,1,s]*Sell1[p] - prodcost[p]*Make1[p] - invcost[p]*Inv1[p]) + Min_Stage2_Profit; subj to Cut_Defn {k in 1..nCUT}: if cut_type[k] = "point" then Min_Stage2_Profit <= sum {t in 2..T, s in SCEN} time_price[t,s,k] * avail[t] + sum {p in PROD, s in SCEN} bal2_price[p,s,k] * (-Inv1[p]) + sum {p in PROD, t in 2..T, s in SCEN} sell_lim_price[p,t,s,k] * market[p,t]; subject to Time1: sum {p in PROD} (1/rate[p]) * Make1[p] <= avail[1]; subject to Balance1 {p in PROD}: Make1[p] + inv0[p] = Sell1[p] + Inv1[p]; .