#define RCS_ID "$Id: scc.c,v 1.41 1995/12/17 22:36:40 jreuter Exp jreuter $" #define BANNER "Z8530 SCC driver version 2.01.dl1bke (alpha) by DL1BKE\n" /* ******************************************************************** * SCC.C - Linux driver for Z8530 based HDLC cards for AX.25 * ******************************************************************** ******************************************************************** Copyright (c) 1993, 1995 Joerg Reuter DL1BKE portions (c) 1993 Guido ten Dolle PE1NNZ ******************************************************************** The driver and the programs in the archive are UNDER CONSTRUCTION. The code is likely to fail, and so your kernel could --- even a whole network. This driver is intended for Amateur Radio use. If you are running it for commercial purposes, please drop me a note. I am nosy... ...BUT: ! You m u s t recognize the appropriate legislations of your country ! ! before you connect a radio to the SCC board and start to transmit or ! ! receive. The GPL allows you to use the d r i v e r, NOT the RADIO! ! For non-Amateur-Radio use please note that you might need a special allowance/licence from the designer of the SCC Board and/or the MODEM. This program is free software; you can redistribute it and/or modify it under the terms of the (modified) GNU General Public License delivered with the Linux kernel source. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should find a copy of the GNU General Public License in /usr/src/linux/COPYING; ******************************************************************** ...If you find any portions of the code that are copyrighted to you, and you don't want to see in here, please send me a private (!) message to my internet site. I will change it as soon as possible. Please don't flame to the tcp-group or anywhere else. Thanks! Joerg Reuter ampr-net: dl1bke@db0pra.ampr.org AX-25 : DL1BKE @ DB0ACH.#NRW.DEU.EU Internet: jreuter@lykos.tng.oche.de Incomplete history of z8530drv: ------------------------------- 940913 - started to write the driver, rescued most of my own code (and Hans Alblas' memory buffer pool concept) from an earlier project "sccdrv" which was initiated by Guido ten Dolle. Not much of the old driver survived, though. The first version I put my hands on was sccdrv1.3 from August 1993. The memory buffer pool concept appeared in an unauthorized sccdrv version (1.5) from August 1994. 950131 - changed copyright notice to GPL without limitations. . . . 950922 - using kernel timer chain 951002 - splitting timer routine, adding support for throttle/ unthrottle calls, removed typo in kiss decoder, corrected termios settings. 951011 - at last found one (the?) problem which caused the driver to mess up buffers on heavy load pe1ayx was complaining about. Quite simple to reproduce: set a 9k6 port into audio loopback, add a route to 44.99.99.99 on that route and do a ping -f 44.99.99.99 951013 - it still does not survive a flood ping... 951107 - axattach w/o "-s" option (or setting an invalid baudrate) does not produce "division by zero" faults anymore. 951114 - rewrote memory management, took first steps to allow compilation as a module. Well, it looks like a whole new driver now. BTW: It d o e s survive the flood ping at last... 951116 - scc_config.h is gone -- the driver will be initialized through ioctl-commands. Use sccinit.c for this purpose. 951117 - Well --- what should I say: You can compile it as a module now. And I solved the problem with slip.c... 951120 - most ioctl() routines may be called w/o suser() permissions, check if you've set the permissions of /dev/scc* right! NOT 0666, you know it's evil ;-) 951217 - found silly bug in init_channel(), some bugfixes for the "standalone" module Thanks to: ---------- PE1CHL Rob - for a lot of good ideas from his SCC driver for DOS PE1NNZ Guido - for his port of the original driver to Linux KA9Q Phil - from whom we stole the mbuf-structure PA3AYX Hans - for some useful changes DL8MBT Flori - for support DG0FT Rene - for the BayCom USCC support PA3AOU Harry - for ESCC testing, information supply and support PE1KOX Rob, DG1RTF Thomas, ON5QK Roland, G4XYW Andy, Linus, EI9GL Paul, and all who sent me bug reports and ideas... NB -- if you find errors, change something, please let me know first before you distribute it... And please don't touch the version number. Just replace my callsign in "v2.01.dl1bke" with your own. Just to avoid confusion... If you want to add your modification to the linux distribution please (!) contact me first. Jörg Reuter DL1BKE */ /* ----------------------------------------------------------------------- */ #define DEBUG_BUFFERS /* keep defined unless it is really stable... */ #undef SCC_DELAY /* perhaps a 486DX2 is a *bit* too fast */ #undef SCC_LDELAY 5 /* slow it even a bit more down */ #undef DONT_CHECK /* don't look if the SCCs you specified are available */ #define MAXSCC 4 /* number of max. supported chips */ #define RXBUFFERS 8 /* default number of RX buffers */ #define TXBUFFERS 8 /* default number of TX buffers */ #define BUFSIZE 384 /* must not exceed 4096-sizeof(mbuf) */ #define TPS 25 /* scc_tx_timer(): Ticks Per Second */ #define DEFAULT_CLOCK 4915200 /* default pclock if nothing is specified */ /* ----------------------------------------------------------------------- */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef MODULE int init_module(void); void cleanup_module(void); #endif #ifndef Z8530_MAJOR #define Z8530_MAJOR 34 #endif int scc_init(void); static struct mbuf * scc_enqueue_buffer(struct mbuf **queue, struct mbuf * buffer); static struct mbuf * scc_dequeue_buffer(struct mbuf **queue); static void alloc_buffer_pool(struct scc_channel *scc); static void free_buffer_pool(struct scc_channel *scc); static struct mbuf * scc_get_buffer(struct scc_channel *scc, char type); int scc_open(struct tty_struct *tty, struct file *filp); static void scc_close(struct tty_struct *tty, struct file *filp); int scc_write(struct tty_struct *tty, int from_user, const unsigned char *buf, int count); static void scc_put_char(struct tty_struct *tty, unsigned char ch); static void scc_flush_chars(struct tty_struct *tty); static int scc_write_room(struct tty_struct *tty); static int scc_chars_in_buffer(struct tty_struct *tty); static void scc_flush_buffer(struct tty_struct *tty); static int scc_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg); static void scc_set_termios(struct tty_struct *tty, struct termios *old_termios); static void scc_set_ldisc(struct tty_struct *tty); static void scc_throttle(struct tty_struct *tty); static void scc_unthrottle(struct tty_struct *tty); static void scc_start(struct tty_struct *tty); static void scc_stop(struct tty_struct *tty); static void z8530_init(void); static void scc_change_speed(struct scc_channel *scc); static void kiss_encode(struct scc_channel *scc); static void init_channel(struct scc_channel *scc); static void scc_key_trx (struct scc_channel *scc, char tx); static void scc_txint(register struct scc_channel *scc); static void scc_exint(register struct scc_channel *scc); static void scc_rxint(register struct scc_channel *scc); static void scc_spint(register struct scc_channel *scc); static void scc_isr(int irq, void *dev_id, struct pt_regs *regs); static void scc_tx_timer(unsigned long); static void scc_rx_timer(unsigned long); static void scc_init_timer(struct scc_channel *scc); /* from serial.c */ static int baud_table[] = { 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 0 }; struct tty_driver scc_driver; static int scc_refcount; static struct tty_struct *scc_table[2*MAXSCC]; static struct termios scc_termios[2 * MAXSCC]; static struct termios scc_termios_locked[2 * MAXSCC]; struct irqflags { unsigned char used : 1; } Ivec[16]; struct scc_channel SCC_Info[2 * MAXSCC]; /* information per channel */ io_port SCC_ctrl[2 * MAXSCC]; /* Control ports */ unsigned char Random = 0; /* random number for p-persist */ unsigned char Driver_Initialized = 0; int Nchips = 0; io_port Vector_Latch = 0; struct semaphore scc_sem = MUTEX; unsigned char scc_wbuf[BUFSIZE]; static struct termios scc_std_termios; /* ******************************************************************** */ /* * Port Access Functions * */ /* ******************************************************************** */ static inline unsigned char InReg(register io_port port, register unsigned char reg) { #ifdef SCC_LDELAY register unsigned char r; Outb(port, reg); udelay(SCC_LDELAY); r=Inb(port); udelay(SCC_LDELAY); return r; #else Outb(port, reg); return Inb(port); #endif } static inline void OutReg(register io_port port, register unsigned char reg, register unsigned char val) { #ifdef SCC_LDELAY Outb(port, reg); udelay(SCC_LDELAY); Outb(port, val); udelay(SCC_LDELAY); #else Outb(port, reg); Outb(port, val); #endif } static inline void wr(register struct scc_channel *scc, register unsigned char reg, register unsigned char val) { OutReg(scc->ctrl, reg, (scc->wreg[reg] = val)); } static inline void or(register struct scc_channel *scc, register unsigned char reg, register unsigned char val) { OutReg(scc->ctrl, reg, (scc->wreg[reg] |= val)); } static inline void cl(register struct scc_channel *scc, register unsigned char reg, register unsigned char val) { OutReg(scc->ctrl, reg, (scc->wreg[reg] &= ~val)); } /* ******************************************************************** */ /* * Memory Buffer Management */ /* ******************************************************************** */ /* * The new buffer scheme uses a ring chain of buffers. This has the * advantage to access both, first and last element of the list, very * fast. It has the disadvantage to mess things up double if something * is wrong. * * Every scc channel has its own buffer pool now with an adjustable * number of buffers for transmit and receive buffers. The buffer * size remains the same for each AX.25 frame, but is (as a semi- * undocumented feature) adjustable within a range of 512 and 4096 * to benefit experiments with higher frame lengths. If you need * larger frames... Well, you'd better choose a whole new concept * for that, like a DMA capable I/O card and a block device driver... * */ /* ------ Management of buffer queues ------ */ /* Insert a buffer at the "end" of the chain */ static struct mbuf * scc_enqueue_buffer(struct mbuf **queue, struct mbuf * buffer) { unsigned long flags; struct mbuf * anchor; save_flags(flags); cli(); /* do not disturb! */ #ifdef DEBUG_BUFFERS if (queue == NULLBUFP) /* called with illegal parameters, notify the user */ { printk("z8530drv: Pointer to queue anchor is NULL pointer [enq]\n"); restore_flags(flags); return NULLBUF; } if (buffer == NULLBUF) { printk("z8530drv: can't enqueue a NULL pointer\n"); restore_flags(flags); return NULLBUF; } #endif anchor = *queue; /* the anchor is the "start" of the chain */ if (anchor == NULLBUF) /* found an empty list */ { *queue = buffer; /* new anchor */ buffer->next = buffer->prev = NULLBUF; } else if (anchor->prev == NULLBUF) /* list has one member only */ { #ifdef DEBUG_BUFFERS if (anchor->prev != NULLBUF) /* oops?! */ printk("weird --- anchor->prev is NULL but not anchor->next [enq]\n"); #endif anchor->next = anchor->prev = buffer; buffer->next = buffer->prev = anchor; } else #ifdef DEBUG_BUFFERS if (anchor->next == NULLBUF) /* this has to be an error. Okay, make the best out of it */ { printk("z8530drv: weird --- anchor->next is NULL but not anchor->prev [enq]\n"); anchor->next = anchor->prev = buffer; buffer->next = buffer->prev = anchor; } else #endif { /* every other case */ buffer->prev = anchor->prev; /* self explaining, isn't it? */ buffer->next = anchor; anchor->prev->next = buffer; anchor->prev = buffer; } restore_flags(flags); return *queue; /* return "start" of chain */ } /* Remove a buffer from the "start" of the chain an return it */ static struct mbuf * scc_dequeue_buffer(struct mbuf **queue) { unsigned long flags; struct mbuf *buffer; save_flags(flags); cli(); #ifdef DEBUG_BUFFERS if (queue == NULLBUFP) /* called with illegal parameter */ { printk("z8530drv: Pointer to queue anchor is NULL pointer [deq]\n"); restore_flags(flags); return NULLBUF; } #endif buffer = *queue; /* head of the chain */ if (buffer != NULLBUF) /* not an empty list? */ { if (buffer->prev != NULLBUF) /* not last buffer? */ { #ifdef DEBUG_BUFFERS if (buffer->next == NULLBUF) { /* what?! */ printk("z8530drv: weird --- buffer->next is NULL but not buffer->prev [deq]\n"); } else #endif if (buffer->prev->next == buffer->prev->prev) { /* only one buffer remaining... */ buffer->next->prev = NULLBUF; buffer->next->next = NULLBUF; } else { /* the one remaining situation... */ buffer->next->prev = buffer->prev; buffer->prev->next = buffer->next; } } #ifdef DEBUG_BUFFERS else if (buffer->next != NULLBUF) printk("z8530drv: weird --- buffer->prev is NULL but not buffer->next [deq]\n"); #endif *queue = buffer->next; /* new head of chain */ buffer->next = NULLBUF; /* for security only... */ buffer->prev = NULLBUF; buffer->rw_ptr = buffer->data; } restore_flags(flags); return buffer; /* give it away... */ } /* ------ buffer pool management ------ */ /* allocate buffer pool for a channel */ static void alloc_buffer_pool(struct scc_channel *scc) { int k; struct mbuf * bptr; int buflen; buflen = sizeof(struct mbuf) + scc->stat.bufsize; if (scc->stat.bufsize < 336) scc->stat.bufsize = 336; if (buflen > 4096) { scc->stat.bufsize = 4096-sizeof(struct mbuf); buflen = 4096; } if (scc->stat.rxbuffers < 4) scc->stat.rxbuffers = 4; if (scc->stat.txbuffers < 4) scc->stat.txbuffers = 4; /* allocate receive buffers for this channel */ for (k = 0; k < scc->stat.rxbuffers ; k++) { /* allocate memory for the struct and the buffer */ bptr = (struct mbuf *) kmalloc(buflen, GFP_ATOMIC); /* should not happen, but who knows? */ if (bptr == NULLBUF) { printk("z8530drv: %s: can't allocate memory for rx buffer pool", kdevname(scc->tty->device)); break; } /* clear memory */ memset(bptr, 0, buflen); /* initialize structure */ bptr->rw_ptr = bptr->data; /* and append the buffer to the pool */ scc_enqueue_buffer(&scc->rx_buffer_pool, bptr); } /* now do the same for the transmit buffers */ for (k = 0; k < scc->stat.txbuffers ; k++) { bptr = (struct mbuf *) kmalloc(buflen, GFP_ATOMIC); if (bptr == NULLBUF) { printk("z8530drv: %s: can't allocate memory for tx buffer pool", kdevname(scc->tty->device)); break; } memset(bptr, 0, buflen); bptr->rw_ptr = bptr->data; scc_enqueue_buffer(&scc->tx_buffer_pool, bptr); } } /* remove buffer pool */ static void free_buffer_pool(struct scc_channel *scc) { struct mbuf * bptr; unsigned long flags; int cnt; /* this one is a bit tricky and probably dangerous. */ save_flags(flags); cli(); /* esp. to free the buffers currently in use by ISR */ bptr = scc->rx_bp; if (bptr != NULLBUF) { scc->rx_bp = NULLBUF; scc_enqueue_buffer(&scc->rx_buffer_pool, bptr); } bptr = scc->tx_bp; if (bptr != NULLBUF) { scc->tx_bp = NULLBUF; scc_enqueue_buffer(&scc->tx_buffer_pool, bptr); } bptr = scc->kiss_decode_bp; if (bptr != NULLBUF) { scc->kiss_decode_bp = NULLBUF; scc_enqueue_buffer(&scc->tx_buffer_pool, bptr); } bptr = scc->kiss_encode_bp; if (bptr != NULLBUF) { scc->kiss_encode_bp = NULLBUF; scc_enqueue_buffer(&scc->rx_buffer_pool, bptr); } restore_flags(flags); while (scc->rx_queue != NULLBUF) { bptr = scc_dequeue_buffer(&scc->rx_queue); scc_enqueue_buffer(&scc->rx_buffer_pool, bptr); } while (scc->tx_queue != NULLBUF) { bptr = scc_dequeue_buffer(&scc->tx_queue); scc_enqueue_buffer(&scc->tx_buffer_pool, bptr); } /* you want to know why we move every buffer back to the buffer pool? Well, good question... ;-) */ cnt = 0; /* Probably because we just want a central position in the code were we actually call free()? */ while (scc->rx_buffer_pool != NULLBUF) { bptr = scc_dequeue_buffer(&scc->rx_buffer_pool); if (bptr != NULLBUF) { cnt++; kfree(bptr); } } if (cnt < scc->stat.rxbuffers) /* hmm... hmm... :-( */ printk("z8530drv: oops, deallocated only %d of %d rx buffers\n", cnt, scc->stat.rxbuffers); if (cnt > scc->stat.rxbuffers) /* WHAT?!! */ printk("z8530drv: oops, deallocated %d instead of %d rx buffers. Very strange.\n", cnt, scc->stat.rxbuffers); cnt = 0; while (scc->tx_buffer_pool != NULLBUF) { bptr = scc_dequeue_buffer(&scc->tx_buffer_pool); if (bptr != NULLBUF) { cnt++; kfree(bptr); } } if (cnt < scc->stat.txbuffers) printk("z8530drv: oops, deallocated only %d of %d tx buffers\n", cnt, scc->stat.txbuffers); if (cnt > scc->stat.txbuffers) printk("z8530drv: oops, deallocated %d instead of %d tx buffers. Very strange.\n", cnt, scc->stat.txbuffers); } /* ------ rx/tx buffer management ------ */ /* get a fresh buffer from the pool if possible; if not: get one from the queue. We will remove the oldest frame from the queue and hope it was a good idea... ;-) */ static struct mbuf * scc_get_buffer(struct scc_channel *scc, char type) { struct mbuf * bptr; if (type == BT_TRANSMIT) { bptr = scc_dequeue_buffer(&scc->tx_buffer_pool); /* no free buffers in the pool anymore? */ if (bptr == NULLBUF) { printk("z8530drv: scc_get_buffer(%s): tx buffer pool empty\n", kdevname(scc->tty->device)); /* use the oldest from the queue instead */ bptr = scc_dequeue_buffer(&scc->tx_queue); /* this should never, ever happen... */ if (bptr == NULLBUF) printk("z8530drv: scc_get_buffer(): panic - even no buffer found in tx queue\n"); } } else { bptr = scc_dequeue_buffer(&scc->rx_buffer_pool); if (bptr == NULLBUF) { printk("z8530drv: scc_get_buffer(%s): rx buffer pool empty\n", kdevname(scc->tty->device)); bptr = scc_dequeue_buffer(&scc->rx_queue); if (bptr == NULLBUF) printk("z8530drv: scc_get_buffer(): panic - even no buffer found in rx queue\n"); } } if (bptr != NULLBUF) { bptr->rw_ptr = bptr->data; bptr->cnt = 0; } return bptr; } /* ******************************************************************** */ /* * Interrupt Service Routines * */ /* ******************************************************************** */ /* ----> interrupt service routine for the 8530 <---- */ /* it's recommended to keep this function "inline" ;-) */ static inline void scc_isr_dispatch(register struct scc_channel *scc, register int vector) { switch (vector & VECTOR_MASK) { case TXINT: scc_txint(scc); break; case EXINT: scc_exint(scc); break; case RXINT: scc_rxint(scc); break; case SPINT: scc_spint(scc); break; default : printk("scc_isr(): unknown interrupt status (addr %4.4x, state %2.2x)\n",scc->ctrl,vector); } } /* If the card has a latch for the interrupt vector (like the PA0HZP card) use it to get the number of the chip that generated the int. If not: poll all defined chips. */ static void scc_isr(int irq, void *dev_id, struct pt_regs *regs) { register unsigned char vector; register struct scc_channel *scc; register io_port q; register io_port *p; register int k; cli(); if (Vector_Latch) { while(1) /* forever...? */ { Outb(Vector_Latch, 0); /* Generate INTACK */ /* Read the vector */ if((vector=Inb(Vector_Latch)) >= 16 * Nchips) break; /* ...not forever! */ /* Extract channel number and status from vector. */ /* Isolate channel number */ /* Call handler */ if (vector & 0x01) break; scc=&SCC_Info[(((vector>>1)&0x7c)^0x04) >> 2]; if (!scc->tty) break; scc_isr_dispatch(scc, vector); Outb(scc->ctrl,0x38); /* Reset Highest IUS" opcode to WR0 */ } sti(); return; } /* Find the SCC generating the interrupt by polling all attached SCCs * reading RR3A (the interrupt pending register) */ k = 0; p = SCC_ctrl; while (k++ < Nchips) { if (!(q=*p++)) break; Outb(q,3); if (Inb(q)) { if (!(q=*p++)) break; Outb(q,2); vector=Inb(q); /* Read the vector */ /* Extract channel number and status from vector. */ /* Isolate channel number */ /* Call handler */ if (vector & 1) break; scc = &SCC_Info[(((vector >> 1) & 0x7c) ^ 0x04) >> 2]; if (!scc->tty) break; /* Isolate status info from vector, call handler */ scc_isr_dispatch(scc, vector); k = 0; p = SCC_ctrl; } else p++; } sti(); } /* ----> four different interrupt handlers for Tx, Rx, changing of */ /* DCD/CTS and Rx/Tx errors */ /* Transmitter interrupt handler */ static void scc_txint(register struct scc_channel *scc) { register struct mbuf *bp; scc->stat.txints++; bp = scc->tx_bp; if (bp == NULLBUF) { do { if (bp != NULLBUF) scc_enqueue_buffer(&scc->tx_buffer_pool, bp); bp = scc_dequeue_buffer(&scc->tx_queue); if (bp == NULLBUF) { scc->stat.tx_state = TXS_BUSY; scc->t_tail = scc->kiss.tailtime; Outb(scc->ctrl, RES_Tx_P); /* clear int */ return; } if ( scc->kiss.not_slip && (bp->cnt > 0) ) { bp->rw_ptr++; bp->cnt--; } } while (bp->cnt < 1); Outb(scc->ctrl, RES_Tx_CRC); /* reset CRC generator */ or(scc,R10,ABUNDER); /* re-install underrun protection */ Outb(scc->data,*bp->rw_ptr); /* send byte */ if (!scc->enhanced) /* reset EOM latch */ Outb(scc->ctrl, RES_EOM_L); scc->tx_bp = bp; scc->stat.tx_state = TXS_ACTIVE; /* next byte... */ } else if (bp->cnt <= 0) { if (--scc->stat.tx_queued < 0) scc->stat.tx_queued = 0; Outb(scc->ctrl, RES_Tx_P); /* reset pending int */ cl(scc, R10, ABUNDER); /* send CRC */ scc_enqueue_buffer(&scc->tx_buffer_pool, bp); scc->tx_bp = NULLBUF; scc->stat.tx_state = TXS_NEWFRAME; /* next frame... */ return; } else { Outb(scc->data,*bp->rw_ptr); } bp->rw_ptr++; /* increment pointer */ bp->cnt--; /* decrease byte count */ } static inline void flush_FIFO(register struct scc_channel *scc) { register int k; for (k=0; k<3; k++) Inb(scc->data); if(scc->rx_bp != NULLBUF) /* did we receive something? */ { scc->stat.rxerrs++; /* then count it as an error */ scc_enqueue_buffer(&scc->rx_buffer_pool, scc->rx_bp); scc->rx_bp = NULLBUF; } } /* External/Status interrupt handler */ static void scc_exint(register struct scc_channel *scc) { register unsigned char status,changes,chg_and_stat; scc->stat.exints++; status = InReg(scc->ctrl,R0); changes = status ^ scc->status; chg_and_stat = changes & status; /* ABORT: generated whenever DCD drops while receiving */ if (chg_and_stat & BRK_ABRT) /* Received an ABORT */ flush_FIFO(scc); /* DCD: on = start to receive packet, off = ABORT condition */ /* (a successfully received packet generates a special condition int) */ if(changes & DCD) /* DCD input changed state */ { if(status & DCD) /* DCD is now ON */ { if (scc->modem.clocksrc != CLK_EXTERNAL) OutReg(scc->ctrl,R14,SEARCH|scc->wreg[R14]); /* DPLL: enter search mode */ or(scc,R3,ENT_HM|RxENABLE); /* enable the receiver, hunt mode */ } else { /* DCD is now OFF */ cl(scc,R3,ENT_HM|RxENABLE); /* disable the receiver */ flush_FIFO(scc); } } #ifdef notdef /* CTS: use external TxDelay (what's that good for?!) */ if (chg_and_stat & CTS) /* CTS is now ON */ { if (!Running(t_txdel) && scc->kiss.txdelay == 0) /* zero TXDELAY = wait for CTS */ scc->t_txdel = 0; /* kick it! */ } #endif if ( (status & TxEOM) && (scc->stat.tx_state == TXS_ACTIVE) ) { scc->stat.tx_under++; /* oops, an underrun! count 'em */ Outb(scc->ctrl, RES_Tx_P); Outb(scc->ctrl, RES_EXT_INT); /* reset ext/status interrupts */ scc->t_maxk = 1; if (scc->tx_bp != NULLBUF) { scc_enqueue_buffer(&scc->tx_buffer_pool, scc->tx_bp); scc->tx_bp = NULLBUF; } if (--scc->stat.tx_queued < 0) scc->stat.tx_queued = 0; or(scc,R10,ABUNDER); } if (status & ZCOUNT) /* Oops? */ { scc->stat.tx_under = 9999; /* errr... yes. */ Outb(scc->ctrl, RES_Tx_P); /* just to be sure */ scc->t_maxk = 1; if (scc->tx_bp != NULLBUF) { scc_enqueue_buffer(&scc->tx_buffer_pool, scc->tx_bp); scc->tx_bp = NULLBUF; } if (--scc->stat.tx_queued < 0) scc->stat.tx_queued = 0; scc->kiss.tx_inhibit = 1; /* don't try it again! */ } scc->status = status; Outb(scc->ctrl,RES_EXT_INT); } /* Receiver interrupt handler */ static void scc_rxint(register struct scc_channel *scc) { register struct mbuf *bp; scc->stat.rxints++; if( Running(t_maxk) && !(scc->kiss.fulldup)) { Inb(scc->data); /* discard char */ or(scc,R3,ENT_HM); /* enter hunt mode for next flag */ return; } bp = scc->rx_bp; if (bp == NULLBUF) { bp = scc_get_buffer(scc, BT_RECEIVE); if (bp == NULLBUF) { printk("scc_rxint(): panic --- cannot get a buffer\n"); Inb(scc->data); or(scc, R3, ENT_HM); scc->stat.nospace++; return; } scc->rx_bp = bp; } if (bp->cnt > scc->stat.bufsize) { #ifdef notdef printk("scc_rxint(): oops, received huge frame...\n"); #endif scc_enqueue_buffer(&scc->rx_buffer_pool, bp); scc->rx_bp = NULLBUF; Inb(scc->data); or(scc, R3, ENT_HM); return; } /* now, we have a buffer. read character and store it */ *bp->rw_ptr = Inb(scc->data); bp->rw_ptr++; bp->cnt++; } /* kick rx_timer (try to send received frame or part of it ASAP) */ /* of course we could define a "bottom half" routine to do the job, but since its structures are saved in an array instead of a linked list we would get in trouble if it clashes with another driver or when we try to modularize the driver. IMHO we are fast enough with a timer routine called on the next timer-INT... Your opinions? */ static inline void kick_rx_timer(register struct scc_channel *scc) { if (scc->rx_t.next) del_timer(&(scc->rx_t)); scc->rx_t.expires = jiffies + 1; scc->rx_t.function = scc_rx_timer; scc->rx_t.data = (unsigned long) scc; add_timer(&scc->rx_t); } /* Receive Special Condition interrupt handler */ static void scc_spint(register struct scc_channel *scc) { register unsigned char status; register struct mbuf *bp; scc->stat.spints++; status = InReg(scc->ctrl,R1); /* read receiver status */ Inb(scc->data); /* throw away Rx byte */ bp = scc->rx_bp; if(status & Rx_OVR) /* receiver overrun */ { scc->stat.rx_over++; /* count them */ or(scc,R3,ENT_HM); /* enter hunt mode for next flag */ if (bp) scc_enqueue_buffer(&scc->rx_buffer_pool, bp); scc->rx_bp = NULLBUF; } if(status & END_FR && bp != NULLBUF) /* end of frame */ { /* CRC okay, frame ends on 8 bit boundary and received something ? */ if (!(status & CRC_ERR) && (status & 0xe) == RES8 && bp->cnt) { /* ignore last received byte (first of the CRC bytes) */ bp->cnt--; scc_enqueue_buffer(&scc->rx_queue, bp); scc->rx_bp = NULLBUF; scc->stat.rxframes++; scc->stat.rx_queued++; kick_rx_timer(scc); } else { /* a bad frame */ scc_enqueue_buffer(&scc->rx_buffer_pool, bp); scc->rx_bp = NULLBUF; scc->stat.rxerrs++; } } Outb(scc->ctrl,ERR_RES); } /* ******************************************************************** */ /* * Init Channel */ /* ******************************************************************** */ /* ----> set SCC channel speed <---- */ static inline void set_brg(register struct scc_channel *scc, unsigned int tc) { unsigned long flags; save_flags(flags); cli(); /* 2-step register accesses... */ cl(scc,R14,BRENABL); /* disable baudrate generator */ wr(scc,R12,tc & 255); /* brg rate LOW */ wr(scc,R13,tc >> 8); /* brg rate HIGH */ or(scc,R14,BRENABL); /* enable baudrate generator */ restore_flags(flags); } static inline void set_speed(register struct scc_channel *scc) { if (scc->modem.speed > 0) /* paranoia... */ set_brg(scc, (unsigned) (scc->clock / (scc->modem.speed * 64)) - 2); } /* ----> initialize a SCC channel <---- */ static inline void init_brg(register struct scc_channel *scc) { wr(scc, R14, BRSRC); /* BRG source = PCLK */ OutReg(scc->ctrl, R14, SSBR|scc->wreg[R14]); /* DPLL source = BRG */ OutReg(scc->ctrl, R14, SNRZI|scc->wreg[R14]); /* DPLL NRZI mode */ } /* * Initialization according to the Z8530 manual (SGS-Thomson's version): * * 1. Modes and constants * * WR9 11000000 chip reset * WR4 XXXXXXXX Tx/Rx control, async or sync mode * WR1 0XX00X00 select W/REQ (optional) * WR2 XXXXXXXX program interrupt vector * WR3 XXXXXXX0 select Rx control * WR5 XXXX0XXX select Tx control * WR6 XXXXXXXX sync character * WR7 XXXXXXXX sync character * WR9 000X0XXX select interrupt control * WR10 XXXXXXXX miscellaneous control (optional) * WR11 XXXXXXXX clock control * WR12 XXXXXXXX time constant lower byte (optional) * WR13 XXXXXXXX time constant upper byte (optional) * WR14 XXXXXXX0 miscellaneous control * WR14 XXXSSSSS commands (optional) * * 2. Enables * * WR14 000SSSS1 baud rate enable * WR3 SSSSSSS1 Rx enable * WR5 SSSS1SSS Tx enable * WR0 10000000 reset Tx CRG (optional) * WR1 XSS00S00 DMA enable (optional) * * 3. Interrupt status * * WR15 XXXXXXXX enable external/status * WR0 00010000 reset external status * WR0 00010000 reset external status twice * WR1 SSSXXSXX enable Rx, Tx and Ext/status * WR9 000SXSSS enable master interrupt enable * * 1 = set to one, 0 = reset to zero * X = user defined, S = same as previous init * * * Note that the implementation differs in some points from above scheme. * */ static void init_channel(register struct scc_channel *scc) { unsigned long flags; if (scc->rx_t.next) del_timer(&(scc->rx_t)); if (scc->tx_t.next) del_timer(&(scc->tx_t)); save_flags(flags); cli(); wr(scc,R4,X1CLK|SDLC); /* *1 clock, SDLC mode */ wr(scc,R1,0); /* no W/REQ operation */ wr(scc,R3,Rx8|RxCRC_ENAB); /* RX 8 bits/char, CRC, disabled */ wr(scc,R5,Tx8|DTR|TxCRC_ENAB); /* TX 8 bits/char, disabled, DTR */ wr(scc,R6,0); /* SDLC address zero (not used) */ wr(scc,R7,FLAG); /* SDLC flag value */ wr(scc,R9,VIS); /* vector includes status */ wr(scc,R10,(scc->modem.nrz? NRZ : NRZI)|CRCPS|ABUNDER); /* abort on underrun, preset CRC generator, NRZ(I) */ wr(scc,R14, 0); /* set clock sources: CLK_DPLL: normal halfduplex operation RxClk: use DPLL TxClk: use DPLL TRxC mode DPLL output CLK_EXTERNAL: external clocking (G3RUH or DF9IC modem) BayCom: others: TxClk = pin RTxC TxClk = pin TRxC RxClk = pin TRxC RxClk = pin RTxC CLK_DIVIDER: RxClk = use DPLL TxClk = pin RTxC BayCom: others: pin TRxC = DPLL pin TRxC = BRG (RxClk * 1) (RxClk * 32) */ switch(scc->modem.clocksrc) { case CLK_DPLL: wr(scc, R11, RCDPLL|TCDPLL|TRxCOI|TRxCDP); init_brg(scc); break; case CLK_DIVIDER: wr(scc, R11, ((scc->brand & BAYCOM)? TRxCDP : TRxCBR) | RCDPLL|TCRTxCP|TRxCOI); init_brg(scc); break; case CLK_EXTERNAL: wr(scc, R11, (scc->brand & BAYCOM)? RCTRxCP|TCRTxCP : RCRTxCP|TCTRxCP); OutReg(scc->ctrl, R14, DISDPLL); break; } set_speed(scc); /* set baudrate */ if(scc->enhanced) { or(scc,R15,SHDLCE|FIFOE); /* enable FIFO, SDLC/HDLC Enhancements (From now R7 is R7') */ wr(scc,R7,AUTOEOM); } if((InReg(scc->ctrl,R0)) & DCD) /* DCD is now ON */ { if (scc->modem.clocksrc != CLK_EXTERNAL) or(scc,R14, SEARCH); or(scc,R3,ENT_HM|RxENABLE); /* enable the receiver, hunt mode */ } /* enable CTS (not for Baycom), ABORT & DCD interrupts */ wr(scc,R15,((scc->brand & BAYCOM) ? 0 : CTSIE)|BRKIE|DCDIE|TxUIE); Outb(scc->ctrl,RES_EXT_INT); /* reset ext/status interrupts */ Outb(scc->ctrl,RES_EXT_INT); /* must be done twice */ or(scc,R1,INT_ALL_Rx|TxINT_ENAB|EXT_INT_ENAB); /* enable interrupts */ scc->status = InReg(scc->ctrl,R0); /* read initial status */ or(scc,R9,MIE); /* master interrupt enable */ scc_init_timer(scc); restore_flags(flags); } /* ******************************************************************** */ /* * SCC timer functions * */ /* ******************************************************************** */ /* ----> scc_key_trx sets the time constant for the baudrate generator and keys the transmitter <---- */ static void scc_key_trx(struct scc_channel *scc, char tx) { unsigned int time_const; if (scc->modem.speed < baud_table[1]) scc->modem.speed = 1200; if (scc->brand & PRIMUS) Outb(scc->ctrl + 4, scc->option | (tx? 0x80 : 0)); time_const = (unsigned) (scc->clock / (scc->modem.speed * (tx? 2:64))) - 2; if (scc->modem.clocksrc == CLK_DPLL) { /* simplex operation */ if (tx) { cl(scc,R3,RxENABLE|ENT_HM); /* then switch off receiver */ set_brg(scc, time_const); /* reprogram baudrate generator */ /* DPLL -> Rx clk, BRG -> Tx CLK, TRxC mode output, TRxC = BRG */ wr(scc, R11, RCDPLL|TCBR|TRxCOI|TRxCBR); or(scc,R5,RTS|TxENAB); /* set the RTS line and enable TX */ } else { cl(scc,R5,RTS|TxENAB); set_brg(scc, time_const); /* reprogram baudrate generator */ /* DPLL -> Rx clk, DPLL -> Tx CLK, TRxC mode output, TRxC = DPLL */ wr(scc, R11, RCDPLL|TCDPLL|TRxCOI|TRxCDP); or(scc,R3,RxENABLE|ENT_HM); } } else { if (tx) or(scc,R5,RTS|TxENAB); /* enable tx */ else cl(scc,R5,RTS|TxENAB); /* disable tx */ } } /* ----> SCC timer interrupt handler and friends. Will be called every 1/TPS s <---- */ static unsigned char Rand = 17; static inline int is_grouped(register struct scc_channel *scc) { int k; struct scc_channel *scc2; unsigned char grp1, grp2; grp1 = scc->kiss.group; for (k = 0; k < (Nchips * 2); k++) { scc2 = &SCC_Info[k]; grp2 = scc2->kiss.group; if (scc2 == scc || !(scc2->tty && grp2)) return 0; if ((grp1 & 0x3f) == (grp2 & 0x3f)) { if ( (grp1 & TXGROUP) && (scc2->wreg[R5] & RTS) ) return 1; if ( (grp1 & RXGROUP) && (scc2->status & DCD) ) return 1; } } return 0; } static inline void dw_slot_timeout(register struct scc_channel *scc) { scc->t_dwait = TIMER_STOPPED; scc->t_slot = TIMER_STOPPED; if (!scc->kiss.fulldup) { Rand = Rand * 17 + 31; if ( (scc->kiss.softdcd? !(scc->status & SYNC_HUNT):(scc->status & DCD)) || (scc->kiss.persist) < Rand || (scc->kiss.group && is_grouped(scc)) ) { if (scc->t_mbusy == TIMER_STOPPED) scc->t_mbusy = TPS * scc->kiss.maxdefer; scc->t_slot = scc->kiss.slottime; return ; } } if ( !(scc->wreg[R5] & RTS) ) { scc->t_txdel = scc->kiss.txdelay; scc_key_trx(scc, TX_ON); } else { scc->t_txdel = 0; } } static inline void txdel_timeout(register struct scc_channel *scc) { scc->t_txdel = TIMER_STOPPED; scc->t_maxk = TPS * scc->kiss.maxkeyup; if (scc->tx_bp == NULLBUF) scc_txint(scc); } static inline void tail_timeout(register struct scc_channel *scc) { scc->t_tail = TIMER_STOPPED; /* when fulldup is 0 or 1, switch off the transmitter. * when frames are still queued (because of transmit time limit), * restart the procedure to get the channel after MINTIME. * when fulldup is 2, the transmitter remains keyed and we * continue sending after waiting for waittime. IDLETIME is an * idle timeout in this case. */ if (scc->kiss.fulldup < 2) { if (scc->tx_bp) /* we had a timeout? */ { scc->stat.tx_state = TXS_BUSY; scc->t_dwait = TPS * scc->kiss.mintime; /* try again */ } scc->stat.tx_state = TXS_IDLE; scc->t_maxk = TIMER_STOPPED; scc_key_trx(scc, TX_OFF); return; } if (scc->tx_bp) /* maxkeyup expired */ /* ?! */ { scc->stat.tx_state = TXS_BUSY; scc->t_txdel = TPS * scc->kiss.waittime; } else scc->t_idle = TPS * scc->kiss.idletime; } static inline void busy_timeout(register struct scc_channel *scc) { #ifdef THROW_AWAY_AFTER_BUSY_TIMEOUT register struct mbuf *bp; /* not tested */ while (bp = scc_dequeue_buffer(&scc->tx_queue)) scc_enqueue_buffer(&scc->tx_buffer_pool, bp); scc->tx_queue = NULLBUF; scc->stat.tx_state = TXS_IDLE; #else scc->t_txdel = scc->kiss.txdelay; /* brute force ... */ #endif scc->t_mbusy = TIMER_STOPPED; } static inline void maxk_idle_timeout(register struct scc_channel *scc) { scc->t_maxk = TIMER_STOPPED; scc->t_idle = TIMER_STOPPED; scc->stat.tx_state = TXS_BUSY; scc->t_tail = scc->kiss.tailtime; } static void scc_tx_timer(unsigned long channel) { register struct scc_channel *scc; unsigned long flags; scc = (struct scc_channel *) channel; if (scc->tty && scc->init) { save_flags(flags); cli(); /* KISS-TNC emulation */ if (Expired(t_dwait)) dw_slot_timeout(scc) ; else if (Expired(t_slot)) dw_slot_timeout(scc) ; else if (Expired(t_txdel)) txdel_timeout(scc) ; else if (Expired(t_tail)) tail_timeout(scc) ; /* watchdogs */ if (Expired(t_mbusy)) busy_timeout(scc); if (Expired(t_maxk)) maxk_idle_timeout(scc); if (Expired(t_idle)) maxk_idle_timeout(scc); restore_flags(flags); } scc->tx_t.expires = jiffies + HZ/TPS; add_timer(&scc->tx_t); } static void scc_rx_timer(unsigned long channel) { register struct scc_channel *scc; scc = (struct scc_channel *) channel; if (scc->rx_queue && scc->throttled) { scc->rx_t.expires = jiffies + HZ/TPS; add_timer(&scc->rx_t); return; } kiss_encode(scc); if (scc->rx_queue && !scc->throttled) { printk("z8530drv: warning: %s should be throttled\n", kdevname(scc->tty->device)); scc->rx_t.expires = jiffies + HZ/TPS; add_timer(&scc->rx_t); } } static void scc_init_timer(struct scc_channel *scc) { unsigned long flags; save_flags(flags); cli(); Stop_Timer(t_dwait); Stop_Timer(t_slot); Stop_Timer(t_txdel); Stop_Timer(t_tail); Stop_Timer(t_mbusy); Stop_Timer(t_maxk); Stop_Timer(t_idle); scc->stat.tx_state = TXS_IDLE; if (scc->tx_t.next) del_timer(&scc->tx_t); scc->tx_t.data = (unsigned long) scc; scc->tx_t.function = scc_tx_timer; scc->tx_t.expires = jiffies + HZ/TPS; add_timer(&scc->tx_t); scc->rx_t.data = (unsigned long) scc; scc->rx_t.function = scc_rx_timer; restore_flags(flags); } /* ******************************************************************** */ /* * KISS interpreter * */ /* ******************************************************************** */ /* * this will set the "kiss" parameters through kiss itself */ static void kiss_set_param(struct scc_channel *scc,char cmd, unsigned int val) { #define VAL val=val*TPS/100 #define SVAL val? val:TIMER_STOPPED switch(cmd){ case PARAM_TXDELAY: scc->kiss.txdelay = VAL; break; case PARAM_PERSIST: scc->kiss.persist = val; break; case PARAM_SLOTTIME: scc->kiss.slottime = VAL; break; case PARAM_TXTAIL: scc->kiss.tailtime = VAL; break; case PARAM_FULLDUP: scc->kiss.fulldup = val; break; case PARAM_WAIT: scc->kiss.waittime = VAL; break; case PARAM_MAXKEY: scc->kiss.maxkeyup = SVAL; break; case PARAM_MIN: scc->kiss.mintime = SVAL; break; case PARAM_IDLE: scc->kiss.idletime = val; break; case PARAM_MAXDEFER: scc->kiss.maxdefer = SVAL; break; case PARAM_GROUP: scc->kiss.group = val; break; case PARAM_TX: scc->kiss.tx_inhibit = val; case PARAM_SOFTDCD: scc->kiss.softdcd = val; } return; #undef VAL #undef SVAL } /* interpret frame: strip CRC and decode KISS */ static void kiss_interpret_frame(struct scc_channel * scc) { unsigned char kisscmd; unsigned long flags; struct mbuf *bp; bp = scc->kiss_decode_bp; bp->rw_ptr = bp->data; #ifdef DEBUG_BUFFERS if (bp == NULLBUF) { printk("kiss_interpret_frame(): weird --- nothing to do.\n"); return; } #endif if (bp->cnt < 2) { scc_enqueue_buffer(&scc->tx_buffer_pool, bp); scc->kiss_decode_bp = NULLBUF; return; } if (scc->kiss.not_slip) { kisscmd = *bp->rw_ptr; bp->rw_ptr++; } else { kisscmd = 0; } if (kisscmd & 0xa0) { if (bp->cnt > 3) bp->cnt -= 2; else { scc_enqueue_buffer(&scc->tx_buffer_pool, bp); scc->kiss_decode_bp = NULLBUF; return; } } kisscmd &= 0x1f; if (kisscmd) { kiss_set_param(scc, kisscmd, *bp->rw_ptr); scc_enqueue_buffer(&scc->tx_buffer_pool, bp); scc->kiss_decode_bp = NULLBUF; return; } scc_enqueue_buffer(&scc->tx_queue, bp); /* enqueue frame */ scc->stat.txframes++; scc->stat.tx_queued++; scc->kiss_decode_bp = NULLBUF; save_flags(flags); cli(); if(scc->stat.tx_state == TXS_IDLE) { /* when transmitter is idle */ scc->stat.tx_state = TXS_BUSY; scc->t_dwait = (scc->kiss.fulldup? 0:scc->kiss.waittime); } restore_flags(flags); } static inline void kiss_store_byte(struct scc_channel *scc, unsigned char ch) { register struct mbuf *bp = scc->kiss_decode_bp; if (bp != NULLBUF) { if (bp->cnt > scc->stat.bufsize) printk("kiss_decode(): frame too long\n"); else { *bp->rw_ptr = ch; bp->rw_ptr++; bp->cnt++; } } } static inline int kiss_decode(struct scc_channel *scc, unsigned char ch) { switch (scc->stat.tx_kiss_state) { case KISS_IDLE: if (ch == FEND) { scc->kiss_decode_bp = scc_get_buffer(scc, BT_TRANSMIT); if (scc->kiss_decode_bp == NULLBUF) return 1; scc->stat.tx_kiss_state = KISS_DATA; } else scc->stat.txerrs++; break; case KISS_DATA: if (ch == FESC) scc->stat.tx_kiss_state = KISS_ESCAPE; else if (ch == FEND) { kiss_interpret_frame(scc); scc->stat.tx_kiss_state = KISS_IDLE; } else kiss_store_byte(scc, ch); break; case KISS_ESCAPE: if (ch == TFEND) { kiss_store_byte(scc, FEND); scc->stat.tx_kiss_state = KISS_DATA; } else if (ch == TFESC) { kiss_store_byte(scc, FESC); scc->stat.tx_kiss_state = KISS_DATA; } else { scc_enqueue_buffer(&scc->tx_buffer_pool, scc->kiss_decode_bp); scc->kiss_decode_bp = NULLBUF; scc->stat.txerrs++; scc->stat.tx_kiss_state = KISS_IDLE; } break; } /* switch */ return 0; } /* ----> Encode received data and write it to the flip-buffer <---- */ static void kiss_encode(register struct scc_channel *scc) { struct mbuf *bp; struct tty_struct * tty = scc->tty; unsigned char ch; bp = scc->kiss_encode_bp; /* worst case: FEND 0 FESC TFEND -> 4 bytes */ while(tty->flip.count < TTY_FLIPBUF_SIZE-4) { if (bp == NULLBUF) { bp = scc_dequeue_buffer(&scc->rx_queue); scc->kiss_encode_bp = bp; if (bp == NULLBUF) { scc->stat.rx_kiss_state = KISS_IDLE; break; } } if (bp->cnt <= 0) { if (--scc->stat.rx_queued < 0) scc->stat.rx_queued = 0; if (scc->stat.rx_kiss_state == KISS_RXFRAME) /* new packet? */ { tty_insert_flip_char(tty, FEND, 0); /* send FEND for old frame */ scc->stat.rx_kiss_state = KISS_IDLE; /* generate FEND for new frame */ } scc_enqueue_buffer(&scc->rx_buffer_pool, bp); bp = scc->kiss_encode_bp = NULLBUF; continue; } if (scc->stat.rx_kiss_state == KISS_IDLE) { tty_insert_flip_char(tty, FEND, 0); if (scc->kiss.not_slip) tty_insert_flip_char(tty, 0, 0); scc->stat.rx_kiss_state = KISS_RXFRAME; } switch(ch = *bp->rw_ptr) { case FEND: tty_insert_flip_char(tty, FESC, 0); tty_insert_flip_char(tty, TFEND, 0); break; case FESC: tty_insert_flip_char(tty, FESC, 0); tty_insert_flip_char(tty, TFESC, 0); break; default: tty_insert_flip_char(tty, ch, 0); } bp->rw_ptr++; bp->cnt--; } queue_task(&tty->flip.tqueue, &tq_timer); /* kick it... */ } /* ******************************************************************* */ /* * Init channel structures, special HW, etc... * */ /* ******************************************************************* */ static void z8530_init(void) { struct scc_channel *scc; int chip, k; unsigned long flags; char *flag; printk("Init Z8530 driver: %u channels, IRQ", Nchips*2); flag=" "; for (k = 0; k < 16; k++) if (Ivec[k].used) { printk("%s%d", flag, k); flag=","; } printk("\n"); /* reset and pre-init all chips in the system */ for (chip = 0; chip < Nchips; chip++) { scc=&SCC_Info[2*chip]; if (!scc->ctrl) continue; save_flags(flags); cli(); /* because of 2-step accesses */ /* Special SCC cards */ if(scc->brand & EAGLE) /* this is an EAGLE card */ Outb(scc->special,0x08); /* enable interrupt on the board */ if(scc->brand & (PC100 | PRIMUS)) /* this is a PC100/EAGLE card */ Outb(scc->special,scc->option); /* set the MODEM mode (0x22) */ /* Init SCC */ /* some general init we can do now */ Outb(scc->ctrl, 0); OutReg(scc->ctrl,R9,FHWRES); /* force hardware reset */ udelay(100); /* give it 'a bit' more time than required */ wr(scc, R2, chip*16); /* interrupt vector */ wr(scc, R9, VIS); /* vector includes status */ restore_flags(flags); } Driver_Initialized = 1; } /* ******************************************************************** */ /* * Filesystem Routines: open, close, ioctl, settermios, etc * */ /* ******************************************************************** */ /* scc_paranoia_check(): warn user if something went wrong */ static inline int scc_paranoia_check(struct scc_channel *scc, kdev_t device, const char *routine) { #ifdef SCC_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for Z8530 SCC struct (%s) in %s\n"; static const char *badinfo = "Warning: Z8530 not found for (%s) in %s\n"; if (!scc->init) { printk(badinfo, kdevname(device), routine); return 1; } if (scc->magic != SCC_MAGIC) { printk(badmagic, kdevname(device), routine); return 1; } #endif return 0; } /* ----> this one is called whenever you open the device <---- */ int scc_open(struct tty_struct *tty, struct file * filp) { struct scc_channel *scc; int chan; chan = MINOR(tty->device) - tty->driver.minor_start; if (Driver_Initialized) { if ( (chan < 0) || (chan >= (Nchips * 2)) ) return -ENODEV; } else { tty->driver_data = &SCC_Info[0]; MOD_INC_USE_COUNT; return 0; } scc = &SCC_Info[chan]; tty->driver_data = scc; tty->termios->c_cflag &= ~CBAUD; if (scc->magic != SCC_MAGIC) { printk("ERROR: scc_open(): bad magic number for device (%s)", kdevname(tty->device)); return -ENODEV; } MOD_INC_USE_COUNT; if(scc->tty != NULL) { scc->tty_opened++; return 0; } scc->tty = tty; alloc_buffer_pool(scc); if(!scc->init) return 0; scc->throttled = 0; scc->stat.tx_kiss_state = KISS_IDLE; /* don't change this... */ scc->stat.rx_kiss_state = KISS_IDLE; /* ...or this */ init_channel(scc); return 0; } /* ----> and this whenever you close the device <---- */ static void scc_close(struct tty_struct *tty, struct file * filp) { struct scc_channel *scc = tty->driver_data; unsigned long flags; if (!scc || (scc->magic != SCC_MAGIC)) return; MOD_DEC_USE_COUNT; if(scc->tty_opened) { scc->tty_opened--; return; } tty->driver_data = NULLBUF; if (!Driver_Initialized) return; save_flags(flags); cli(); Outb(scc->ctrl,0); /* Make sure pointer is written */ wr(scc,R1,0); /* disable interrupts */ wr(scc,R3,0); scc->tty = NULL; del_timer(&scc->tx_t); del_timer(&scc->rx_t); free_buffer_pool(scc); restore_flags(flags); scc->throttled = 0; tty->stopped = 0; } /* * change scc_speed */ static void scc_change_speed(struct scc_channel * scc) { long speed; if (scc->tty == NULL) return; speed = baud_table[scc->tty->termios->c_cflag & CBAUD]; if (speed > 0) scc->modem.speed = speed; if (scc->stat.tx_state == 0) /* only switch baudrate on rx... ;-) */ set_speed(scc); } /* ----> ioctl-routine of the driver <---- */ /* perform ioctl on SCC (sdlc) channel * this is used for AX.25 mode, and will set the "kiss" parameters */ /* TIOCMGET - get modem status arg: (unsigned long *) arg * TIOCMBIS - set PTT arg: --- * TIOCMBIC - reset PTT arg: --- * TIOCMBIC - set PTT arg: --- * TIOCSCCINI - initialize driver arg: --- * TIOCCHANINI - initialize channel arg: (struct scc_modem *) arg * TIOCGKISS - get level 1 parameter arg: (struct ioctl_command *) arg * TIOCSKISS - set level 1 parameter arg: (struct ioctl_command *) arg * TIOCSCCSTAT - get driver status arg: (struct scc_stat *) arg */ static int scc_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { struct scc_channel * scc = tty->driver_data; unsigned long flags, r; unsigned int result; unsigned int value; struct ioctl_command kiss_cmd; struct scc_mem_config memcfg; struct scc_hw_config hwcfg; int error, chan; if (scc->magic != SCC_MAGIC) { printk("ERROR: scc_ioctl(): bad magic number for device %s", kdevname(tty->device)); return -ENODEV; } r = NO_SUCH_PARAM; if (!Driver_Initialized) { if (cmd == TIOCSCCCFG) { int found = 1; if (!suser()) return -EPERM; if (!arg) return -EFAULT; if (Nchips >= MAXSCC) return -EINVAL; memcpy_fromfs(&hwcfg, (void *) arg, sizeof(hwcfg)); if (hwcfg.irq == 2) hwcfg.irq = 9; if (!Ivec[hwcfg.irq].used && hwcfg.irq) { if (request_irq(hwcfg.irq, scc_isr, SA_INTERRUPT, "AX.25 SCC", NULL)) printk("z8530drv: Warning --- could not get IRQ %d\n", hwcfg.irq); else Ivec[hwcfg.irq].used = 1; } if (hwcfg.vector_latch) Vector_Latch = hwcfg.vector_latch; if (hwcfg.clock == 0) hwcfg.clock = DEFAULT_CLOCK; #ifndef DONT_CHECK save_flags(flags); cli(); check_region(scc->ctrl, 1); Outb(hwcfg.ctrl_a, 0); udelay(5); OutReg(hwcfg.ctrl_a,R13,0x55); /* is this chip really there? */ udelay(5); if (InReg(hwcfg.ctrl_a,R13) != 0x55 ) found = 0; restore_flags(flags); #endif if (found) { SCC_Info[2*Nchips ].ctrl = hwcfg.ctrl_a; SCC_Info[2*Nchips ].data = hwcfg.data_a; SCC_Info[2*Nchips+1].ctrl = hwcfg.ctrl_b; SCC_Info[2*Nchips+1].data = hwcfg.data_b; SCC_ctrl[2*Nchips ] = hwcfg.ctrl_a; SCC_ctrl[2*Nchips+1] = hwcfg.ctrl_b; } for (chan = 0; chan < 2; chan++) { SCC_Info[2*Nchips+chan].special = hwcfg.special; SCC_Info[2*Nchips+chan].clock = hwcfg.clock; SCC_Info[2*Nchips+chan].brand = hwcfg.brand; SCC_Info[2*Nchips+chan].option = hwcfg.option; SCC_Info[2*Nchips+chan].enhanced = hwcfg.escc; #ifdef DONT_CHECK printk("%s%i: data port = 0x%3.3x control port = 0x%3.3x\n", scc_driver.name, 2*Nchips+chan, SCC_Info[2*Nchips+chan].data, SCC_Info[2*Nchips+chan].ctrl); #else printk("%s%i: data port = 0x%3.3x control port = 0x%3.3x -- %s\n", scc_driver.name, 2*Nchips+chan, chan? hwcfg.data_b : hwcfg.data_a, chan? hwcfg.ctrl_b : hwcfg.ctrl_a, found? "found" : "missing"); #endif if (found) { request_region(SCC_Info[2*Nchips+chan].ctrl, 1, "scc ctrl"); request_region(SCC_Info[2*Nchips+chan].data, 1, "scc data"); } } if (found) Nchips++; return 0; } if (cmd == TIOCSCCINI) { if (!suser()) return -EPERM; if (Nchips == 0) return -EINVAL; z8530_init(); scc->tty=tty; alloc_buffer_pool(scc); return 0; } return -EINVAL; /* confuse the user */ } if (!scc->init) { if (cmd == TIOCCHANINI) { if (!arg) return -EFAULT; if (!suser()) return -EPERM; memcpy_fromfs(&scc->modem, (void *) arg, sizeof(struct scc_modem)); /* default KISS Params */ if (scc->modem.speed < 4800) { scc->kiss.txdelay = 36*TPS/100; /* 360 ms */ scc->kiss.persist = 42; /* 25% persistence */ /* was 25 */ scc->kiss.slottime = 16*TPS/100; /* 160 ms */ scc->kiss.tailtime = 4; /* minimal reasonable value */ scc->kiss.fulldup = 0; /* CSMA */ scc->kiss.waittime = 50*TPS/100; /* 500 ms */ scc->kiss.maxkeyup = 10; /* 10 s */ scc->kiss.mintime = 3; /* 3 s */ scc->kiss.idletime = 30; /* 30 s */ scc->kiss.maxdefer = 120; /* 2 min */ scc->kiss.not_slip = 1; /* KISS mode */ scc->kiss.softdcd = 0; /* hardware dcd */ } else { scc->kiss.txdelay = 10*TPS/100; /* 100 ms */ scc->kiss.persist = 64; /* 25% persistence */ /* was 25 */ scc->kiss.slottime = 8*TPS/100; /* 160 ms */ scc->kiss.tailtime = 1; /* minimal reasonable value */ scc->kiss.fulldup = 0; /* CSMA */ scc->kiss.waittime = 50*TPS/100; /* 500 ms */ scc->kiss.maxkeyup = 7; /* 7 s */ scc->kiss.mintime = 3; /* 3 s */ scc->kiss.idletime = 30; /* 30 s */ scc->kiss.maxdefer = 120; /* 2 min */ scc->kiss.not_slip = 1; /* KISS mode */ scc->kiss.softdcd = 0; /* hardware dcd */ } scc->init = 1; return 0; } return -EINVAL; } switch(cmd){ case TCSBRK: return 0; case TIOCMGET: error = verify_area(VERIFY_WRITE, (void *) arg,sizeof(unsigned int *)); if (error) return error; save_flags(flags); cli(); result = ((scc->wreg[R5] & RTS) ? TIOCM_RTS : 0) | ((scc->wreg[R5] & DTR) ? TIOCM_DTR : 0) | ((InReg(scc->ctrl,R0) & DCD) ? TIOCM_CAR : 0) | ((InReg(scc->ctrl,R0) & CTS) ? TIOCM_CTS : 0); restore_flags(flags); put_user(result,(unsigned int *) arg); return 0; case TIOCMBIS: case TIOCMBIC: case TIOCMSET: switch (cmd) { case TIOCMBIS: scc->wreg[R5] |= DTR; scc->wreg[R5] |= RTS; break; case TIOCMBIC: scc->wreg[R5] &= ~DTR; scc->wreg[R5] &= ~RTS; break; case TIOCMSET: value = get_user((unsigned int *) arg); if(value & TIOCM_DTR) scc->wreg[R5] |= DTR; else scc->wreg[R5] &= ~DTR; if(value & TIOCM_RTS) scc->wreg[R5] |= RTS; else scc->wreg[R5] &= ~RTS; break; } save_flags(flags); cli(); if(scc->stat.tx_state == TXS_IDLE && !Running(t_idle)) maxk_idle_timeout(scc); restore_flags(flags); return 0; case TCGETS: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(struct termios)); if (error) return error; if (!arg) return -EFAULT; memcpy_tofs((void *) arg, scc->tty->termios, sizeof(struct termios)); return 0; case TCSETS: case TCSETSF: /* should flush first, but... */ case TCSETSW: /* should wait 'till flush, but... */ if (!arg) return -EFAULT; memcpy_fromfs(scc->tty->termios, (void *) arg, sizeof(struct termios)); scc_change_speed(scc); return 0; case TIOCCHANMEM: if (!arg) return -EFAULT; memcpy_fromfs(&memcfg, (void *) arg, sizeof(struct scc_mem_config)); save_flags(flags); cli(); free_buffer_pool(scc); scc->stat.rxbuffers = memcfg.rxbuffers; scc->stat.txbuffers = memcfg.txbuffers; scc->stat.bufsize = memcfg.bufsize; alloc_buffer_pool(scc); restore_flags(flags); return 0; case TIOCSCCSTAT: error = verify_area(VERIFY_WRITE, (void *) arg,sizeof(struct scc_stat)); if (error) return error; if (!arg) return -EFAULT; memcpy_tofs((void *) arg, &scc->stat, sizeof(struct scc_stat)); return 0; #define TICKS (100/TPS) #define CAST(x) (unsigned long)(x) #define Val kiss_cmd.param #define VAL kiss_cmd.param*TPS/100 #define SVAL kiss_cmd.param? kiss_cmd.param:TIMER_STOPPED case TIOCGKISS: error = verify_area(VERIFY_WRITE, (void *) arg,sizeof(struct ioctl_command)); if (error) return error; if (!arg) return -EFAULT; memcpy_fromfs(&kiss_cmd, (void *) arg, sizeof(struct ioctl_command)); switch (kiss_cmd.command) { case PARAM_TXDELAY: r = CAST(scc->kiss.txdelay*TICKS); break; case PARAM_PERSIST: r = CAST(scc->kiss.persist); break; case PARAM_SLOTTIME: r = CAST(scc->kiss.slottime*TICKS); break; case PARAM_TXTAIL: r = CAST(scc->kiss.tailtime*TICKS); break; case PARAM_FULLDUP: r = CAST(scc->kiss.fulldup); break; case PARAM_SOFTDCD: r = CAST(scc->kiss.softdcd); break; case PARAM_DTR: r = CAST((scc->wreg[R5] & DTR)? 1:0); break; case PARAM_RTS: r = CAST((scc->wreg[R5] & RTS)? 1:0); break; case PARAM_SPEED: r = CAST(scc->modem.speed); break; case PARAM_GROUP: r = CAST(scc->kiss.group); break; case PARAM_IDLE: r = CAST(scc->kiss.idletime); break; case PARAM_MIN: r = CAST(scc->kiss.mintime); break; case PARAM_MAXKEY: r = CAST(scc->kiss.maxkeyup); break; case PARAM_WAIT: r = CAST(scc->kiss.waittime); break; case PARAM_MAXDEFER: r = CAST(scc->kiss.maxdefer); break; case PARAM_TX: r = CAST(scc->kiss.tx_inhibit); break; case PARAM_SLIP: r = CAST(!scc->kiss.not_slip); break; default: r = NO_SUCH_PARAM; } kiss_cmd.param = r; memcpy_tofs((void *) arg, &kiss_cmd, sizeof(struct ioctl_command)); return 0; break; case TIOCSKISS: if (!arg) return -EFAULT; memcpy_fromfs(&kiss_cmd, (void *) arg, sizeof(struct ioctl_command)); switch (kiss_cmd.command) { case PARAM_TXDELAY: scc->kiss.txdelay=VAL; break; case PARAM_PERSIST: scc->kiss.persist=Val; break; case PARAM_SLOTTIME: scc->kiss.slottime=VAL; break; case PARAM_TXTAIL: scc->kiss.tailtime=VAL; break; case PARAM_FULLDUP: scc->kiss.fulldup=Val; break; case PARAM_SOFTDCD: scc->kiss.softdcd=Val; break; case PARAM_DTR: break; /* does someone need this? */ case PARAM_RTS: break; /* or this? */ case PARAM_SPEED: scc->modem.speed=Val; break; case PARAM_GROUP: scc->kiss.group=Val; break; case PARAM_IDLE: scc->kiss.idletime=Val; break; case PARAM_MIN: scc->kiss.mintime=SVAL; break; case PARAM_MAXKEY: scc->kiss.maxkeyup=SVAL; break; case PARAM_WAIT: scc->kiss.waittime=Val; break; case PARAM_MAXDEFER: scc->kiss.maxdefer=SVAL; break; case PARAM_TX: scc->kiss.tx_inhibit=Val; break; case PARAM_SLIP: scc->kiss.not_slip=!Val; break; default: return -ENOIOCTLCMD; } return 0; break; #undef TICKS #undef CAST #undef VAL #undef SVAL #undef Val default: return -ENOIOCTLCMD; } } /* ----> tx routine: decode KISS data and scc_enqueue it <---- */ /* send raw frame to SCC. used for AX.25 */ int scc_write(struct tty_struct *tty, int from_user, const unsigned char *buf, int count) { struct scc_channel * scc = tty->driver_data; unsigned char *p; unsigned long flags; int cnt, cnt2; if (!tty) return count; if (scc_paranoia_check(scc, tty->device, "scc_write")) return 0; if (scc->kiss.tx_inhibit) return count; save_flags(flags); cli(); cnt2 = count; while (cnt2) { cnt = cnt2 > BUFSIZE? BUFSIZE:cnt2; cnt2 -= cnt; if (from_user) { down(&scc_sem); memcpy_fromfs(scc_wbuf, buf, cnt); up(&scc_sem); } else memcpy(scc_wbuf, buf, cnt); /* Strange thing. The timeout of the slip driver is */ /* very small, thus we'll wake him up now. */ if (cnt2 == 0) { wake_up_interruptible(&tty->write_wait); if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); } else buf += cnt; p=scc_wbuf; while(cnt--) if (kiss_decode(scc, *p++)) { scc->stat.nospace++; restore_flags(flags); return 0; } } /* while cnt2 */ restore_flags(flags); return count; } /* put a single char into the buffer */ static void scc_put_char(struct tty_struct * tty, unsigned char ch) { struct scc_channel *scc = tty->driver_data; unsigned char ch2; if (scc_paranoia_check(scc, tty->device, "scc_put_char")) return; ch2 = ch; scc_write(tty, 0, &ch2, 1); /* that's all */ } static void scc_flush_chars(struct tty_struct * tty) { struct scc_channel *scc = tty->driver_data; scc_paranoia_check(scc, tty->device, "scc_flush_chars"); /* just to annoy the user... */ return; /* no flush needed */ } static int scc_write_room(struct tty_struct *tty) { struct scc_channel *scc = tty->driver_data; if (scc_paranoia_check(scc, tty->device, "scc_write_room")) return 0; return BUFSIZE; } static int scc_chars_in_buffer(struct tty_struct *tty) { struct scc_channel *scc = tty->driver_data; if (scc && scc->kiss_decode_bp) return scc->kiss_decode_bp->cnt; else return 0; } static void scc_flush_buffer(struct tty_struct *tty) { struct scc_channel *scc = tty->driver_data; if (scc_paranoia_check(scc, tty->device, "scc_flush_buffer")) return; wake_up_interruptible(&tty->write_wait); if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); } static void scc_throttle(struct tty_struct *tty) { struct scc_channel *scc = tty->driver_data; if (scc_paranoia_check(scc, tty->device, "scc_throttle")) return; #ifdef DEBUG printk("scc: scc_throttle() called for device %d\n", MINOR(tty->device)); #endif scc->throttled = 1; del_timer(&(scc->rx_t)); scc->rx_t.expires = jiffies + HZ/TPS; add_timer(&scc->rx_t); } static void scc_unthrottle(struct tty_struct *tty) { struct scc_channel *scc = tty->driver_data; if (scc_paranoia_check(scc, tty->device, "scc_unthrottle")) return; #ifdef DEBUG printk("scc: scc_unthrottle() called for device %d\n", MINOR(tty->device)); #endif scc->throttled = 0; del_timer(&(scc->rx_t)); scc_tx_timer(scc->rx_t.data); } /* experimental, the easiest way to stop output is a fake scc_throttle */ static void scc_start(struct tty_struct *tty) { struct scc_channel *scc = tty->driver_data; if (scc_paranoia_check(scc, tty->device, "scc_start")) return; scc_unthrottle(tty); } static void scc_stop(struct tty_struct *tty) { struct scc_channel *scc = tty->driver_data; if (scc_paranoia_check(scc, tty->device, "scc_stop")) return; scc_throttle(tty); } static void scc_set_termios(struct tty_struct * tty, struct termios * old_termios) { struct scc_channel *scc = tty->driver_data; if (scc_paranoia_check(scc, tty->device, "scc_set_termios")) return; if (old_termios && (tty->termios->c_cflag == old_termios->c_cflag)) return; scc_change_speed(scc); } static void scc_set_ldisc(struct tty_struct * tty) { struct scc_channel *scc = tty->driver_data; if (scc_paranoia_check(scc, tty->device, "scc_set_ldisc")) return; scc_change_speed(scc); } /* ******************************************************************** */ /* * Init SCC driver * */ /* ******************************************************************** */ int scc_init (void) { int chip, chan, k; memset(&scc_std_termios, 0, sizeof(struct termios)); memset(&scc_driver, 0, sizeof(struct tty_driver)); scc_driver.magic = TTY_DRIVER_MAGIC; scc_driver.name = "scc"; scc_driver.major = Z8530_MAJOR; scc_driver.minor_start = 0; scc_driver.num = MAXSCC*2; scc_driver.type = TTY_DRIVER_TYPE_SERIAL; scc_driver.subtype = 1; /* not needed */ scc_driver.init_termios = scc_std_termios; scc_driver.init_termios.c_cflag = B9600 | CREAD | CS8 | HUPCL | CLOCAL; scc_driver.init_termios.c_iflag = IGNBRK | IGNPAR; scc_driver.flags = TTY_DRIVER_REAL_RAW; scc_driver.refcount = &scc_refcount; scc_driver.table = scc_table; scc_driver.termios = (struct termios **) scc_termios; scc_driver.termios_locked = (struct termios **) scc_termios_locked; scc_driver.open = scc_open; scc_driver.close = scc_close; scc_driver.write = scc_write; scc_driver.start = scc_start; scc_driver.stop = scc_stop; scc_driver.put_char = scc_put_char; scc_driver.flush_chars = scc_flush_chars; scc_driver.write_room = scc_write_room; scc_driver.chars_in_buffer = scc_chars_in_buffer; scc_driver.flush_buffer = scc_flush_buffer; scc_driver.throttle = scc_throttle; scc_driver.unthrottle = scc_unthrottle; scc_driver.ioctl = scc_ioctl; scc_driver.set_termios = scc_set_termios; scc_driver.set_ldisc = scc_set_ldisc; printk(BANNER); if (tty_register_driver(&scc_driver)) { printk("Failed to register Z8530 SCC driver\n"); return -EIO; } /* pre-init channel information */ for (chip = 0; chip < MAXSCC; chip++) { memset((char *) &SCC_Info[2*chip ], 0, sizeof(struct scc_channel)); memset((char *) &SCC_Info[2*chip+1], 0, sizeof(struct scc_channel)); for (chan = 0; chan < 2; chan++) { SCC_Info[2*chip+chan].magic = SCC_MAGIC; SCC_Info[2*chip+chan].stat.rxbuffers = RXBUFFERS; SCC_Info[2*chip+chan].stat.txbuffers = TXBUFFERS; SCC_Info[2*chip+chan].stat.bufsize = BUFSIZE; } } for (k = 0; k < 16; k++) Ivec[k].used = 0; return 0; } /* ******************************************************************** */ /* * Module support * */ /* ******************************************************************** */ #ifdef MODULE int init_module(void) { int result = 0; result = scc_init(); if (result == 0) printk("Copyright 1993,1995 Joerg Reuter DL1BKE (jreuter@lykos.tng.oche.de)\n"); return result; } void cleanup_module(void) { long flags; io_port ctrl; int k, errno; struct scc_channel *scc; save_flags(flags); cli(); if ( (errno = tty_unregister_driver(&scc_driver)) ) { printk("Failed to unregister Z8530 SCC driver (%d)", -errno); restore_flags(flags); return; } for (k = 0; k < Nchips; k++) if ( (ctrl = SCC_ctrl[k*2]) ) { Outb(ctrl, 0); OutReg(ctrl,R9,FHWRES); /* force hardware reset */ udelay(50); } for (k = 0; k < Nchips*2; k++) { scc = &SCC_Info[k]; if (scc) { release_region(scc->ctrl, 1); release_region(scc->data, 1); } } for (k=0; k < 16 ; k++) if (Ivec[k].used) free_irq(k, NULL); restore_flags(flags); } #endif .