
Package ‘seqimpute’
January 20, 2026

Type Package

Title Imputation of Missing Data in Sequence Analysis

Version 2.2.1

Description Multiple imputation of missing data in a dataset using MICT or
MICT-timing methods. The core idea of the algorithms is to fill gaps of
missing data, which is the typical form of missing data in a longitudinal
setting, recursively from their edges. Prediction is based on either a
multinomial or random forest regression model. Covariates and
time-dependent covariates can be included in the model.

License GPL-2

Imports Amelia, cluster, dfidx, doRNG, doSNOW, dplyr, foreach,
graphics, mlr, nnet, parallel, plyr, ranger, rms, stats,
stringr, TraMineR, TraMineRextras, utils, mice, parallelly

Suggests R.rsp, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder R.rsp

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

URL https://github.com/emerykevin/seqimpute

BugReports https://github.com/emerykevin/seqimpute/issues

NeedsCompilation no

Author Kevin Emery [aut, cre],
Anthony Guinchard [aut],
Andre Berchtold [aut],
Kamyar Taher [aut]

Maintainer Kevin Emery <kevin.emery@unige.ch>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2026-01-20 17:10:02 UTC

1

https://github.com/emerykevin/seqimpute
https://github.com/emerykevin/seqimpute/issues

2 addcluster

Contents

addcluster . 2
fromseqimp . 3
gameadd . 4
plot.seqimp . 4
print.seqimp . 5
seqaddNA . 5
seqcomplete . 7
seqimpute . 8
seqmissfplot . 12
seqmissimplic . 13
seqmissIplot . 14
seqQuickLook . 15
seqTrans . 16
seqwithmiss . 17
summary.seqimp . 17

Index 19

addcluster Function that adds the clustering result to a seqimp object obtained
with the seqimpute function

Description

Function that adds the clustering result to a seqimp object obtained with the seqimpute function

Usage

addcluster(impdata, clustering)

Arguments

impdata An object of class seqimp as created by the seqimpute function

clustering clustering made on the multiple imputed dataset. Can either be a dataframe or
a matrix, where each row correspond to an observation and each column to a
multiple imputed dataset

Value

Returns a seqimp object containing the cluster to which each sequence in each imputed dataset
belongs. Specifically, a column named cluster is added to the imputed datasets.

fromseqimp 3

fromseqimp Transform an object of class seqimp into a dataframe or a mids object

Description

The function converts a seqimp object into a specified format.

Usage

fromseqimp(data, format = "long", include = FALSE)

Arguments

data An object of class seqimp as created by the function seqimpute

format The format in which the seqimp object should be returned. It could be: "long",
"stacked" and "mids". See the Details section for the interpretation.

include logical that indicates if the original dataset with missing value should be in-
cluded or not. This parameter does not apply if format="mids".

Details

The argument format specifies the object that should be returned by the function. It can take the
following values

"long" produces a data set in which imputed data sets are stacked vertically. The following
columns are added: 1) .imp referring to the imputation number, and 2) .id the row names of
the original dataset

"stacked" the same as "long", but without the inclusion of the two columns .imp and .id

"mids" produces an object of class mids, which is the format used by the mice package.

Value

Transform a seqimp object into the desired format.

Author(s)

Kevin Emery

Examples

Not run:
Imputation with the MICT algorithm
imp <- seqimpute(data = gameadd, var = 1:4)

The object imp is transformed to a dataframe, where completed datasets are
stacked vertically

imp.stacked <- fromseqimp(

4 plot.seqimp

data = imp,
format = "stacked", include = FALSE

)

End(Not run)

gameadd Example data set: Game addiction

Description

Dataset containing variables on the gaming addiction of young people. The data consists of gaming
addiction, coded as either ’no’ or ’yes’, measured over four consecutive years for 500 individuals,
three covariates and one time-dependent covariate. The yearly states are recorded in columns 1
(T1_abuse) to 4 (T4_abuse).

The three covariates are

• Gender (female or male),

• Age (measured at time 1),

• Track (school or apprenticeship).

The time-varying covariate consists of the individual’s relationship to gambling at each of the four
time points, appearing in columns T1_gambling, T2_gambling, T3_gambling, and T4_gambling.
The states are either no, gambler or problematic gambler

Usage

data(gameadd)

Format

A data frame containing 500 rows, 4 states variable, 3 covariates and a time-dependent covariate.

plot.seqimp Plot a seqimp object

Description

Plot a seqimp object. The state distribution plot of the first m completed datasets is shown, possibly
alongside the original dataset with missing data

Usage

S3 method for class 'seqimp'
plot(x, m = 5, include = TRUE, ...)

print.seqimp 5

Arguments

x Object of class seqimp

m Number of completed datasets to show

include logical that indicates if the original dataset with missing value should be plotted
or not

... Arguments to be passed to the seqdplot function

Author(s)

Kevin Emery

print.seqimp Print a seqimp object

Description

Print a seqimp object

Usage

S3 method for class 'seqimp'
print(x, ...)

Arguments

x Object of class seqimp

... additional arguments passed to other functions

Author(s)

Kevin Emery

seqaddNA Generation of missing on longitudinal categorical data.

Description

Generation of missing data in sequence based on a Markovian approach.

6 seqaddNA

Usage

seqaddNA(
data,
var = NULL,
states.high = NULL,
propdata = 1,
pstart.high = 0.1,
pstart.low = 0.005,
pcont = 0.66,
maxgap = 3,
maxprop = 0.75,
only.traj = FALSE

)

Arguments

data A data frame containing sequences of a categorical (multinomial) variable, where
missing data are coded as NA.

var A vector specifying the columns of the dataset that contain the trajectories. De-
fault is NULL, meaning all columns are used.

states.high A list of states with a higher probability of initiating a subsequent missing data
gap.

propdata Proportion of trajectories for which missing data is simulated, as a decimal be-
tween 0 and 1.

pstart.high Probability of starting a missing data gap for the states specified in the states.high
argument.

pstart.low Probability of starting a missing data gap for all other states.

pcont Probability of a missing data gap to continue.

maxgap Maximum length of a missing data gap.

maxprop Maximum proportion of missing data allowed in a sequence, as a decimal be-
tween 0 and 1.

only.traj Logical, if TRUE, only the trajectories (specified in var) are returned. If FALSE,
the entire data frame is returned.

Details

The first time point of a trajectory has a pstart.low probability to be missing. For the next time
points, the probability to be missing depends on the previous time point. There are four cases:

1. If the previous time point is missing and the maximum length of a missing gap, which is specified
by the argument maxgap, is reached, the time point is set as observed.

2. If the previous time point is missing, but the maximum length of a gap is not reached, there is a
pcont probability that this time point is missing.

3. If the previous time point is observed and the previous time point belongs to the list of states
specified by pstart.high, the probability to be missing is pstart.high.

seqcomplete 7

4. If the previous time point is observed but the previous time point does not belong to the list of
states specified by pstart.high, the probability to be missing is pstart.low.

If the proportion of missing data in a given trajectory exceeds the proportion specified by maxprop,
the missing data simulation is repeated for the sequence.

Value

A data frame with simulated missing data.

Author(s)

Kevin Emery

Examples

Generate MCAR missing data on the mvad dataset
from the TraMineR package

data(mvad, package = "TraMineR")
mvad.miss <- seqaddNA(mvad, var = 17:86)

Generate missing data on mvad where joblessness is more likely to trigger
a missing data gap
mvad.miss2 <- seqaddNA(mvad, var = 17:86, states.high = "joblessness")

seqcomplete Extract all the trajectories without missing value.

Description

Extract all the trajectories without missing value.

Usage

seqcomplete(data, var = NULL)

Arguments

data either a data frame containing sequences of a multinomial variable with missing
data (coded as NA) or a state sequence object built with the TraMineR package

var the list of columns containing the trajectories. Default is NULL, i.e. all the
columns.

8 seqimpute

Value

Returns either a data frame or a state sequence object, depending the type of data that was provided
to the function

Author(s)

Kevin Emery

Examples

Game addiction dataset
data(gameadd)
Extract the trajectories without any missing data
gameadd.complete <- seqcomplete(gameadd, var = 1:4)

seqimpute seqimpute: Imputation of missing data in longitudinal categorical
data

Description

The seqimpute package implements the MICT and MICT-timing methods. These are multiple im-
putation methods for longitudinal data. The core idea of the algorithms is to fills gaps of missing
data, which is the typical form of missing data in a longitudinal setting, recursively from their edges.
The prediction is based on either a multinomial or a random forest regression model. Covariates
and time-dependent covariates can be included in the model.

The MICT-timing algorithm is an extension of the MICT algorithm designed to address a key limi-
tation of the latter: its assumption that position in the trajectory is irrelevant.

Usage

seqimpute(
data,
var = NULL,
np = 1,
nf = 1,
m = 5,
timing = FALSE,
frame.radius = 0,
covariates = NULL,
time.covariates = NULL,
regr = "multinom",
npt = 1,
nfi = 1,
ParExec = FALSE,
ncores = NULL,

seqimpute 9

SetRNGSeed = FALSE,
end.impute = TRUE,
verbose = TRUE,
available = TRUE,
pastDistrib = FALSE,
futureDistrib = FALSE,
...

)

Arguments

data Either a data frame containing sequences of a categorical variable, where miss-
ing data are coded as NA, or a state sequence object created using the seqdef
function. If using a state sequence object, any "void" elements will also be
treated as missing. See the end.impute argument if you wish to skip imputing
values at the end of the sequences.

var A specifying the columns of the dataset that contain the trajectories. Default is
NULL, meaning all columns are used.

np Number of prior states to include in the imputation model for internal gaps.

nf Number of subsequent states to include in the imputation model for internal
gaps.

m Number of multiple imputations to perform (default: 5).

timing Logical, specifies the imputation algorithm to use. If FALSE, the MICT algorithm
is applied; if TRUE, the MICT-timing algorithm is used.

frame.radius Integer, relevant only for the MICT-timing algorithm, specifying the radius of
the timeframe.

covariates List of the columns of the dataset containing covariates to be included in the
imputation model.

time.covariates

List of the columns of the dataset with time-varying covariates to include in the
imputation model.

regr Character specifying the imputation method. Options include "multinom" for
multinomial models and "rf" for random forest models.

npt Number of prior observations in the imputation model for terminal gaps (i.e.,
gaps at the end of sequences).

nfi Number of future observations in the imputation model for initial gaps (i.e., gaps
at the beginning of sequences).

ParExec Logical, indicating whether to run multiple imputations in parallel. Setting to
TRUE can improve computation time depending on available cores.

ncores Integer, specifying the number of cores to use for parallel computation. If unset,
defaults to the maximum number of CPU cores minus one.

SetRNGSeed Integer, to set the random seed for reproducibility in parallel computations. Note
that setting set.seed() alone does not ensure reproducibility in parallel mode.

end.impute Logical. If FALSE, missing data at the end of sequences will not be imputed.

10 seqimpute

verbose Logical, if TRUE, displays progress and warnings in the console. Use FALSE for
silent computation.

available Logical, specifies whether to consider already imputed data in the predictive
model. If TRUE, previous imputations are used; if FALSE, only original data are
considered.

pastDistrib Logical, if TRUE, includes the past distribution as a predictor in the imputation
model.

futureDistrib Logical, if TRUE, includes the future distribution as a predictor in the imputation
model.

... Named arguments that are passed down to the imputation functions.

Details

The imputation process is divided into several steps, depending on the type of gaps of missing data.
The order of imputation of the gaps are:

Internal gap: there is at least np observations before an internal gap and nf after the gap

Initial gap: gaps situated at the very beginning of a trajectory

Terminal gap: gaps situated at the very end of a trajectory

Left-hand side specifically located gap (SLG): gaps that have at least nf observations after
the gap, but less than np observation before it

Right-hand side SLG: gaps that have at least np observations before the gap, but less than nf
observation after it

Both-hand side SLG: gaps that have less than np observations before the gap, and less than nf
observations after it

The primary difference between the MICT and MICT-timing algorithms lies in their approach to se-
lecting patterns from other sequences for fitting the multinomial model. While the MICT algorithm
considers all similar patterns regardless of their temporal placement, MICT-timing restricts pattern
selection to those that are temporally closest to the missing value. This refinement ensures that the
imputation process adequately accounts for temporal dynamics, imping in more accurate imputed
values.

Value

An object of class seqimp, which is a list with the following elements:

data A data.frame containing the original (incomplete) data.

imp A list of m data.frame corresponding to the imputed datasets.

m The number of imputations.

method A character vector specifying whether MICT or MICT-timing was used.

np Number of prior states included in the imputation model.

nf Number of subsequent states included in the imputation model.

regr A character vector specifying whether multinomial or random forest imputation models were
applied.

call The call that created the object.

seqimpute 11

Author(s)

Kevin Emery <kevin.emery@unige.ch>, Andre Berchtold, Anthony Guinchard, and Kamyar Taher

References

Halpin, B. (2012). Multiple imputation for life-course sequence data. Working Paper WP2012-01,
Department of Sociology, University of Limerick. http://hdl.handle.net/10344/3639.

Halpin, B. (2013). Imputing sequence data: Extensions to initial and terminal gaps, Stata’s. Work-
ing Paper WP2013-01, Department of Sociology, University of Limerick. http://hdl.handle.net/10344/3620

Emery, K., Studer, M., & Berchtold, A. (2024). Comparison of imputation methods for univariate
categorical longitudinal data. Quality & Quantity, 1-25. https://link.springer.com/article/10.1007/s11135-
024-02028-z

Examples

Default multiple imputation of the trajectories of game addiction with the
MICT algorithm

set.seed(5)
imp1 <- seqimpute(data = gameadd, var = 1:4)

Default multiple imputation with the MICT-timing algorithm
set.seed(3)
imp2 <- seqimpute(data = gameadd, var = 1:4, timing = TRUE)

Inclusion in the MICt-timing imputation process of the three background
characteristics (Gender, Age and Track), and the time-varying covariate
about gambling

set.seed(4)
imp3 <- seqimpute(

data = gameadd, var = 1:4, covariates = 5:7,
time.covariates = 8:11

)

Parallel computation

imp4 <- seqimpute(
data = gameadd, var = 1:4, covariates = 5:7,
time.covariates = 8:11, ParExec = TRUE, ncores = 5, SetRNGSeed = 2

)

12 seqmissfplot

seqmissfplot Plot the most common patterns of missing data.

Description

This function plots the most frequent patterns of missing data, based on the seqfplot function.

Usage

seqmissfplot(data, var = NULL, with.complete = TRUE, void.miss = TRUE, ...)

Arguments

data Either a data frame containing sequences of a categorical variable, where miss-
ing data are coded as NA, or a state sequence object created using the seqdef
function.

var A vector specifying the columns of the dataset that contain the trajectories. De-
fault is NULL, meaning all columns are used.

with.complete Logical, if TRUE, complete trajectories will be included in the plot.

void.miss Logical, if TRUE, treats void elements as missing values. Applies only to state
sequence objects created with seqdef. Note that the default behavior of seqdef
is to treat missing data at the end of sequences as void elements.

... Additional parameters passed to the seqfplot function.

Details

This plot function is based on the seqfplot function, allowing users to visualize patterns of missing
data within sequences. For details on additional customizable arguments, see the seqfplot docu-
mentation.

By default, this function plots the 10 most frequent patterns. The number of patterns to be plotted
can be adjusted using the idxs argument in seqfplot.

Author(s)

Kevin Emery

Examples

Plot the 10 most common patterns of missing data

seqmissfplot(gameadd, var = 1:4)

Plot the 10 most common patterns of missing data discarding
complete trajectories

seqmissfplot(gameadd, var = 1:4, with.missing = FALSE)

seqmissimplic 13

Plot only the 5 most common patterns of missing data discarding
complete trajectories

seqmissfplot(gameadd, var = 1:4, with.missing = FALSE, idxs = 1:5)

seqmissimplic Identification and visualization of states that best characterize se-
quences with missing data

Description

This function identifies and visualizes states that best characterize sequences with missing data at
each position (time point), comparing them to sequences without missing data at each position (time
point). It is based on the seqimplic function. For more information on the methodology, see the
seqimplic documentation.

Usage

seqmissimplic(data, var = NULL, void.miss = TRUE, ...)

Arguments

data Either a data frame containing sequences of a categorical variable, where miss-
ing data are coded as NA, or a state sequence object created using the seqdef
function.

var A vector specifying the columns of the dataset that contain the trajectories. De-
fault is NULL, meaning all columns are used.

void.miss Logical, if TRUE, treats void elements as missing values. This argument applies
only to state sequence objects created with seqdef. Note that the default behavior
of seqdef is to treat missing data at the end of sequences as void elements.

... parameters to be passed to the seqimplic function

Value

returns a seqimplic object that can be plotted and printed.

Author(s)

Kevin Emery

14 seqmissIplot

Examples

For illustration purpose, we simulate missing data on the mvad dataset,
available in the TraMineR package. The state "joblessness" state has a
higher probability of triggering a missing gap

Not run:
data(mvad, package = "TraMineR")
mvad.miss <- seqaddNA(mvad, var = 17:86, states.high = "joblessness")

The states that best characterize sequences with missing data
implic <- seqmissimplic(mvad.miss, var = 17:86)

Visualization of the results
plot(implic)

End(Not run)

seqmissIplot Plot all the patterns of missing data.

Description

This function plots all patterns of missing data within sequences, based on the seqIplot function.

Usage

seqmissIplot(data, var = NULL, with.complete = TRUE, void.miss = TRUE, ...)

Arguments

data Either a data frame containing sequences of a categorical variable, where miss-
ing data are coded as NA, or a state sequence object created using the seqdef
function.

var A vector specifying the columns of the dataset that contain the trajectories. De-
fault is NULL, meaning all columns are used.

with.complete Logical, if TRUE, complete trajectories will be included in the plot.

void.miss Logical, if TRUE, treats void elements as missing values. Applies only to state
sequence objects created with seqdef. Note that the default behavior of seqdef
is to treat missing data at the end of sequences as void elements.

... Additional parameters passed to the seqIplot function.

Details

This function uses seqIplot to visualize all patterns of missing data within sequences. For further
customization options, refer to the seqIplot documentation.

seqQuickLook 15

Author(s)

Kevin Emery

Examples

Plot all the patterns of missing data

seqmissIplot(gameadd, var = 1:4)

Plot all the patterns of missing data discarding
complete trajectories

seqmissIplot(gameadd, var = 1:4, with.missing = FALSE)

seqQuickLook Summary of the types of gaps among a dataset

Description

The seqQuickLook() function aimed at providing an overview of the number and size of the dif-
ferent types of gaps spread in the original dataset.

Usage

seqQuickLook(data, var = NULL, np = 1, nf = 1)

Arguments

data a data.frame where missing data are coded as NA or a state sequence object built
with seqdef function

var the list of columns containing the trajectories. Default is NULL, i.e. all the
columns.

np number of previous observations in the imputation model of the internal gaps.

nf number of future observations in the imputation model of the internal gaps.

Details

The distinction between internal and SLG gaps depends on the number of previous (np) and future
(nf) observations that are set for the MICT and MICT-timing algorithms.

Value

Returns a data.frame object that summarizes, for each type of gaps (Internal Gaps, Initial Gaps,
Terminal Gaps, LEFT-hand side SLG, RIGHT-hand side SLG, Both-hand side SLG), the minimum
length, the maximum length, the total number of gaps and the total number of missing they contain.

16 seqTrans

Author(s)

Andre Berchtold and Kevin Emery

Examples

data(gameadd)

seqQuickLook(data = gameadd, var = 1:4, np = 1, nf = 1)

seqTrans Spotting impossible transitions in longitudinal categorical data

Description

The purpose of seqTrans is to spot impossible transitions in longitudinal categorical data.

Usage

seqTrans(data, var = NULL, trans)

Arguments

data a data frame containing sequences of a multinomial variable with missing data
(coded as NA)

var the list of columns containing the trajectories. Default is NULL, i.e. all the
columns.

trans character vector gathering the impossible transitions. For example: trans <-
c("1->3","1->4","2->1","4->1","4->3")

Value

It returns a matrix where each row is the position of an impossible transition.

Author(s)

Andre Berchtold and Kevin Emery

Examples

data(gameadd)

seqTransList <- seqTrans(data = gameadd, var = 1:4, trans = c("yes->no"))

seqwithmiss 17

seqwithmiss Extract all the trajectories with at least one missing value

Description

Extract all the trajectories with at least one missing value

Usage

seqwithmiss(data, var = NULL)

Arguments

data either a data frame containing sequences of a multinomial variable with missing
data (coded as NA) or a state sequence object built with the TraMineR package

var the list of columns containing the trajectories. Default is NULL, i.e. all the
columns.

Value

Returns either a data frame or a state sequence object, depending the type of data that was provided
to the function

Author(s)

Kevin Emery

Examples

Game addiction dataset
data(gameadd)
Extract the trajectories without any missing data
gameadd.withmiss <- seqwithmiss(gameadd, var = 1:4)

summary.seqimp Summary of a seqimp object

Description

Summary of a seqimp object

Usage

S3 method for class 'seqimp'
summary(object, ...)

18 summary.seqimp

Arguments

object of class seqimp

... additional arguments passed to other functions

Author(s)

Kevin Emery

Index

∗ datasets
gameadd, 4

addcluster, 2

fromseqimp, 3

gameadd, 4

plot.seqimp, 4
print.seqimp, 5

seqaddNA, 5
seqcomplete, 7
seqdef, 9, 12–15
seqfplot, 12
seqimplic, 13
seqimpute, 3, 8
seqIplot, 14
seqmissfplot, 12
seqmissimplic, 13
seqmissIplot, 14
seqQuickLook, 15
seqTrans, 16
seqwithmiss, 17
summary.seqimp, 17

19

	addcluster
	fromseqimp
	gameadd
	plot.seqimp
	print.seqimp
	seqaddNA
	seqcomplete
	seqimpute
	seqmissfplot
	seqmissimplic
	seqmissIplot
	seqQuickLook
	seqTrans
	seqwithmiss
	summary.seqimp
	Index

