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This ‘vignette’ is largely based on Petersen et al. (2017).

1 Model Specification

The general specification of an interval regression model with sample selection is:
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where subscript ¢ indicates the observation, yiO * is a latent outcome variable, yl-o is a
partially observed categorical variable that indicates in which interval ylo * lies, M is the
number of intervals, aq, ..., apr41 are the boundaries of the intervals (whereas frequently
but not necessarily oy = —oo and a4 = 00), yf is a binary variable that indicates
whether yZO is observed, yf * is a latent variable that indicates the “tendency” that yf is
one, 7 and x¢ are (column) vectors of explanatory variables for the selection equation
ZS and 5? are random disturbance terms that have
a joint bivariate normal distribution, and ,BS and BO are (column) vectors and p and o
are scalars of unknown model parameters.
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2 Log-Likelihood Function

The probability that ylo is unobserved is:
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The probability that yZO is observed and indicates that yf) * lies in the mth interval is:
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The log-likelihood contribution of the ¢th observation is:
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where ®(.) indicates the cumulative distribution function of the univariate standard nor-
mal distribution and ®5(.) indicates the cumulative distribution function of the bivariate
standard normal distribution.

3 Restricting coefficients p and o2

The parameter p needs to be in the interval (—1,1). In order to restrict p to be in
this interval, we estimate arctan(p) instead of p so that the derived parameter p =
tan(arctan(p)) is always in the interval (—1,1). We use the delta method to calculate
approximate standard errors of the derived parameter p, whereas the corresponding ele-
ment of the Jacobian matrix is:
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The parameter o needs to be strictly positive, i.e. ¢ > 0. In order to restrict ¢ to be
strictly positive, we estimate log(c) instead of o or o2 so that the derived parameters
o = exp(log(c)) and 02 = exp(2 log(c)) are always strictly positive. We use the delta



method to calculate approximate standard errors of the derived parameters o and o2,
whereas the corresponding elements of the Jacobian matrix are:
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dexp(2 log(o))

Tloz(o) =2 exp(2 log(o)) = 2 2 (15)

4 Gradients of the CDF of the bivariate standard normal
distribution

In order to facilitate the calculation of the gradients of the log-likelihood function, we
calculate the partial derivatives of the cumulative distribution function (CDF) of the
bivariate standard normal distribution:
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where ¢(.) is the probability density function (PDF) of the bivariate standard normal
distribution:
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In the following, we check equation (17) by a simple numerical example:

library( "mvtnorm" )

library( "maxLik" )

x1 <- 0.4

x2 <- -0.3

rho <- -0.6

sigma <- matrix( c¢( 1, rho, rho, 1 ), nrow = 2 )
dens <- dmvnorm( c( x1, x2 ), sigma = sigma )
print( dens )

V V.V V VvV Vv VvV

[1] 0.1831324

> all.equal( dens, ( 2 * pi * sqrt( 1 - rho~2 ) )~(-1) *
+ exp( - ( x172 - 2 * rho * x1 * x2 +x2°2 ) / (2% (1 -rho~2) ) ) )

[1] TRUE



4.1 Gradients with respect to the limits (z; and )
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where ¢( , 1, 02) indicates the density function of a normal distribution with mean y and

variance o2.

In the following, we use the same simple numerical example as in the beginning of
section 4 to check the above derivations. First, we check whether the PDF of the bi-
variate standard normal distribution, i.e. ¢a(z1,x2, p) (part of equation 18), is equal to

é(ml,pwg, 1 — p?) ¢(z2) (part of equation 20) and equal to ¢ ((wl — px2)/ (/1 — p2)>
-1

<\/1 - p2> ¢(z2) (part of equations 21 and 22):

> all.equal( dens, dnorm( x1, rho * x2, sqrt( 1 - rho~2 ) ) * dnorm(x2) )

[1] TRUE

> all.equal( dens, ( dnorm( ( x1 - rho * x2 ) / sqrt( 1 - rho~2 ) ) /
+ sqrt( 1 - rho~2 ) ) * dnorm(x2) )

[1] TRUE

In the following, we will numerically calculate the derivative of the cumulative distri-
bution function of the bivaraite normal distribution (equation 16) with respect to z and
check wehther this partial derivative is equal to the right-hand sides of equations (18),
(21), (22), and (24):

> funX2 <- function( a2 ) {
+ prob <- pmvnorm( upper = c( x1, a2 ), sigma = sigma )



+ return( prob )

+ }

> grad <- c( numericGradient( funX2, x2 ) )
> print( grad )

[1] 0.2320142

> funX1 <- function( al ) {

+ dens <- rep( NA, length( al ) )

+ for( i in 1:length( a1 ) ) {

+ dens[i] <- dmvnorm( c( a1ll[i], x2 ), sigma = sigma )

+ }

+ return( dens )

+ }

> all.equal( grad, integrate( funX1, lower = -Inf, upper = x1 )$value )

[1] TRUE

> funXla <- function( a1l ) {

+ dens <- rep( NA, length( al ) )

+ for( i in 1:length( al ) ) {

+ dens[i] <- ( dnorm( ( a1[i] - rho * x2 ) / sqrt( 1 - rho~2 ) ) /
+ sqrt(1-rho~2) ) * dnorm(x2)

+ }

+ return( dens )

+ }

> all.equal( grad, integrate( funXla, lower = -Inf, upper = x1 )$value )

[1] TRUE

> funX1b <- function( al ) {

+ dens <- rep( NA, length( a1l ) )

+ for( i in 1:length( a1l ) ) {

+ dens[i] <- dnorm( ( ai1[i] - rho * x2 ) / sqrt( 1 - rho~2 ) ) /
+ sqrt (1-rho~2)

+ }

+ return( dens )

+ }

> all.equal( grad,

+ integrate( funX1b, lower = -Inf, upper = x1 )$value * dnorm(x2) )

[1] TRUE

> all.equal( grad,
+ pnorm( ( x1 - rho * x2 ) / sqrt( 1 - rho~2 ) ) * dnorm( x2 ) )

[1] TRUE



4.2 Gradients with respect to the coefficient of correlation (p)
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Applying L’Hospital on the last term leads to
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This result is in line with Sibuya (1960) and Sungur (1990).
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In the following, we will numerically calculate the derivative of the cumulative distri-
bution function of the bivariate normal distribution (equation 26) with respect to p and
check whether this partial derivative is equal to the right-hand sides of equation (44):

# Numerical gradient of the PDF w.r.t. rho
funrho <- function( p ) {
prob <- dmvnorm( x = c( x1, x2 ),
sigma = matrix( c( 1, p, p, 1 ), nrow =2 ) )
return( prob )
}
grad <- c( numericGradient( funrho, rho ) )
print( grad )

vV VvV + + + + VvV V

[1] -0.1775883

> # Comparison with analytical gradient for rho
> efun <- exp(-(x1"2 - 2 * rho * x1 * x2 + x2°2)/(2%(1 - rho~2)))



> all.equal( grad,
+ ( (-((2%rho* (-2*rho*x1%x2+x1~2+x2"2) - 2*x1*x2%(1-rho~2)) * efun)/

+ (2%(1-rho~2)~(3/2) )) +

+ ((rho*efun)/(sqrt(1-rho~2))) ) /

+ (2#pi*(1-rho~2)) )

[1] TRUE

[1] TRUE

[1] TRUE

(1] TRUE

> # Numerical gradient of the CDF w.r.t. rho
> cdfRho <- function( p, xa = x1, xb = x2 ) {
+ prob <- pmvnorm( upper = c( xa, xb ),

+ sigma = matrix( c( 1, p, p, 1 ), nrow =2 ) )
+ return( prob )

+ }

> grad <- c( numericGradient( cdfRho, rho ) )
> print( grad )

[1] 0.1831324

> # comparison with analytical gradient
> all.equal( grad, dmvnorm( x = c( x1, x2 ),
+ sigma = matrix( c( 1, rho, rho, 1 ), nrow =2 ) ) )

[1] TRUE

> # comparisons with other values
> compDerivRho <- function( xa, xb, p ) {
+ dn <- c( numericGradient( cdfRho, p, xa = xa, xb = xb ) )

+ da <- dmvnorm( x = c¢( xa, xb ),

+ sigma = matrix( ¢( 1, p, p, 1 ), nrow = 2 ) )
+ return( all.equal( dn, da ) )

+

> compDerivRho( x1, x2, rho )

[1] TRUE
> compDerivRho( 0.5, x2, rho )

[1] TRUE



> compDerivRho( 2.5, x2, rho )
[1] TRUE

> compDerivRho( x1, -2, rho )
[1] TRUE

> compDerivRho( x1, x2, 0.2 )
[1] TRUE

> compDerivRho( x1, x2, 0.98 )

[1] TRUE

10



5 Gradients of the Log-Likelihood Function

5.1 Gradients with respect to the parameters of the selection
equation (3°)

First, we use equation (24), to determine the derivative of the bivariate standard normal
distribution with respect to the parameter 3° as part of the loglikelihood function:

_ 30’20 /
oP, [ em=B z’ 35’5 070
2 < - 716 i, —p » o [Z z; —pﬁS/Jf? 6BS/$$
5 = Ti)- 5
op 1— p? oB

o’ O
,3 +pBS S

RYer:

Using this result we can now derive the gradient for 3° in the log-likelihood function:
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5.2 Gradients with respect to the parameters in the outcome
equation (3°)

Analogous to 8° and by using equation (24) we derive the gradient of B°:
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Using this result we derive the gradient for the outcome parameter B¢ for the log-
likelihood function:
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5.3 Gradients with respect to the coefficient of correlation (p)

Given the result that the derivative of the CDF with respect to p is equal to the PDF
(see equation 44), we can also derive the gradient of the correlation parameter (p):
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5.4 Gradients with respect to the standard deviation used for
normalisation ()

Finally, we derive the gradient for ¢ in the same way as we did for 3 and 39:
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6 Example with a Generated Dataset

7 Generate Dataset

> library( "mvtnorm" )

> # number of observations
> n0Obs <- 300

> # parameters

16




betaS <- ¢( 1, 1, -1 )

betal <- c( 10, 4 )

rho <- 0.4

sigma <- 5

# boundaries of the intervals

bound <- c(-Inf,5,15,Inf)

# set 'seed' of the pseudo random number generator

# in order to always generate the same pseudo random numbers
set.seed(123)

# generate variables x1 and x2

dat <- data.frame( x1 = rnorm( nObs ), x2 = rnorm( nObs ) )

# variance-covariance matrix of the two error terms

vcovMat <- matrix( c( 1, rho*sigma, rho*sigma, sigma~2 ), nrow = 2 )
# generate the two error terms

eps <- rmvnorm( n0Obs, sigma = vcovMat )

dat$epsS <- epsl,1]

dat$eps0 <- eps[,2]

# generate the selection variable

dat$yS <- with( dat, betaS[1] + betaS[2] * x1 + betaS[3] * x2 + epsS ) > 0
table( dat$yS )

VVVVVVVVVVVVVVVVVVVYV

FALSE TRUE
91 209

# generate the unobserved/latent outcome variable
dat$yOu <- with( dat, betaO[1] + betaO[2] * x1 + epsO )
dat$yOul[ !dat$yS ] <- NA

# obtain the intervals of the outcome variable

dat$y0 <- cut( dat$yOu, bound )

table( dat$y0 )

vV V. Vv VvV Vv Vv

(-Inf,5] (5,15] (15, Inf]
26 130 53

7.1 Estimation of the Model

In the following estimation, the starting values are obtained by a maximum-likelihood
(ML) estimation of a tobit-2 model, where the dependent variable of the outcome equa-
tion is set to the mid points of the intervals:

> library( "sampleSelection" )
> res <- selection( yS ~ x1 + x2, y0 ~ x1, data = dat, boundaries = bound )
> res

Call:
selection(selection = yS

x1l + x2, outcome = y0 x1, data = dat, boundaries

17
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Coefficients:

S: (Intercept) S:x1 S:x2 0:(Intercept) 0:x1
0.9820 0.9668 -1.2862 10.2403 2.6598
logSigma atanhRho sigma sigmaSq rho
1.6308 0.2988 5.1077 26.0890 0.2902

> summary( res )

Tobit 2 model with interval outcome (sample selection model)
Maximum Likelihood estimation
BHHH maximisation, 21 iterations
Return code 8: successive function values within relative tolerance limit (reltol)
Log-Likelihood: -275.395
300 observations (91 censored and 209 observed)
Intervals of the dependent variable of the outcome equation:
YO lower upper count
1 (-Inf,5] -Inf 5 26
2 (5,15] 5 15 130
3 (15, Inf] 15 Inf 53
7 free parameters (df = 293)
Probit selection equation:
Estimate Std. Error t value Pr(>lt|)

(Intercept)  0.9820 0.1085 9.049 < 2e-16 **x*
x1 0.9668 0.1491 6.484 3.78e-10 **x*
x2 -1.2862 0.1209 -10.637 < 2e-16 **x*

Outcome equation:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.2403 0.6681 15.328 < 2e-16 **x*
x1 2.6598 0.5921 4.492 1.02e-05 **x*
Error terms:
Estimate Std. Error t value Pr(>|tl)

logSigma 1.63076 0.07474 21.820 < 2e-16 **x*
atanhRho 0.29881 0.36188 0.826 0.410
sigma 5.10774 0.38174 13.380 < 2e-16 **x*
sigmaSq 26.08901 3.89971 6.690 1.13e-10 *xx
rho 0.29022 0.33140 0.876 0.382

Signif. codes: 0 ‘**x’ 0.001 ‘**’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ > 1

In the following estimation, the starting values are obtained by a two-step estimation
of a tobit-2 model, where the dependent variable of the outcome equation is set to the
mid points of the intervals:

18



> res2 <- selection( yS ~ x1 + x2, y0 ~ x1, data = dat, boundaries = bound,
+ start = "2step" )

> res2
Call:
selection(selection = yS ~ x1 + x2, outcome = y0 ~ x1, data = dat, start = "2step",

Coefficients:
S: (Intercept) S:x1 S:x2 0:(Intercept) 0:x1

0.9820 0.9668 -1.2862 10.2403 2.6598

logSigma atanhRho sigma sigmaSq rho
1.6308 0.2988 5.1077 26.0890 0.2902

> summary( res2 )

Tobit 2 model with interval outcome (sample selection model)
Maximum Likelihood estimation
BHHH maximisation, 21 iterations
Return code 8: successive function values within relative tolerance limit (reltol)
Log-Likelihood: -275.395
300 observations (91 censored and 209 observed)
Intervals of the dependent variable of the outcome equation:
YO lower upper count
1 (-Inf,5] -Inf 5 26
2 (5,15] 5 15 130
3 (15, Inf] 15 Inf 53
7 free parameters (df = 293)
Probit selection equation:
Estimate Std. Error t value Pr(>|t|)

(Intercept)  0.9820 0.1085 9.049 < 2e-16 **xx
x1 0.9668 0.1491 6.484 3.78e-10 *x*x
x2 -1.2862 0.1209 -10.637 < 2e-16 **x

Outcome equation:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) 10.2403 0.6681 15.328 < 2e-16 *x*x
x1 2.6598 0.5921 4.492 1.02e-05 *x*x*
Error terms:
Estimate Std. Error t value Pr(>|tl)

logSigma 1.63076 0.07474 21.820 < 2e-16 **x
atanhRho 0.29880 0.36188 0.826 0.410
sigma 5.10774 0.38174 13.380 < 2e-16 ***
sigmaSq 26.08900 3.89970 6.690 1.13e-10 **x
rho 0.29021 0.33140 0.876 0.382
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Signif. codes: 0 “**x? 0.001 ‘**’> 0.01 ‘%’ 0.05 “.” 0.1 ¢ > 1

The following commands compare the starting values and the estimated coefficients:

> # compare starting values (small differences)
> cbind( res$start, res2$start, res$start - res2$start )

[,1] [,2] [,3]
(Intercept) 0.9818072 0.9800827 0.001724574
x1 0.9663185 0.9686013 -0.002282885
x2 -1.2866893 -1.2808419 -0.005847461
(Intercept) 10.3990738 10.3516223 0.047451510
x1 3.7408112 3.7642665 -0.023455273
logSigma 4.2797893 4.2813219 -0.001532652
atanhRho 0.2362382 0.2550566 -0.018818413

> # combare estimated coefficients (virtually identical)
> cbind( coef( res ), coef( res2 ), coef( res ) - coef( res2 ) )

[,1] [,2] [,3]
(Intercept) 0.9820207 0.9820209 -2.186942e-07
x1 0.9667788 0.9667789 -1.484320e-07
x2 -1.2862335 -1.2862333 -2.546365e-07
(Intercept) 10.2402931 10.2403019 -8.764296e-06
x1 2.6597945 2.6597881 6.368136e-06
logSigma 1.6307571 1.6307570 1.082407e-07
atanhRho 0.2988073 0.2988007 6.581781e-06
sigma 5.1077402 5.1077397 5.528652e-07
sigmaSq 26.0890100 26.0890044 5.647783e-06
rho 0.2902207 0.2902147 6.027421e-06

8 Example with the ‘Smoke’ dataset

The following command loads the dataset:
> data( "Smoke" )

The following command creates a vector with the boundaries of the intervals:
> bounds <- ¢( 0, 5, 10, 20, 50, Inf )

The following command estimates the model with few explanatory variables:

> SmokeResl <- selection( smoker ~ educ + age,

+ cigs_intervals ~ educ, data = Smoke, boundaries = bounds )
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The following command estimates the model with more explanatory variables:

> SmokeRes2 <- selection( smoker ~ educ + age + restaurn,
+ cigs_intervals ~ educ + income + restaurn, data = Smoke,
+ boundaries = bounds )

The following commands test whether adding further explanatory variables signifi-
cantly improves the explanatory power of the model:

> library( "lmtest" )
> Ilrtest( SmokeResl1, SmokeRes2 )

Likelihood ratio test

Model 1: selection(selection = smoker ~ educ + age, outcome = cigs_intervals ~
educ, data = Smoke, boundaries = bounds)

Model 2: selection(selection = smoker ~ educ + age + restaurn, outcome = cigs_intervals ~

educ + income + restaurn, data = Smoke, boundaries = bounds)
#Df LogLik Df Chisq Pr(>Chisq)
1 7 -940.54
2 10 -936.30 3 8.4705 0.03723 *

Signif. codes: 0 “**x> 0.001 “**> 0.01 ‘%’ 0.05 “.” 0.1 ¢ > 1
> waldtest( SmokeResl, SmokeRes2 )
Wald test

Model 1: selection(selection = smoker ~ educ + age, outcome = cigs_intervals ~
educ, data = Smoke, boundaries = bounds)

Model 2: selection(selection = smoker ~ educ + age + restaurn, outcome = cigs_intervals ~

educ + income + restaurn, data = Smoke, boundaries = bounds)
Res.Df Df Chisq Pr(>Chisq)
1 800
2 797 3 7.8636 0.04892 *

Signif. codes: 0 “**x’ 0.001 ‘**’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ > 1

Both tests indicate that—at 5% significance level—the model with more explanatory
variables (SmokeRes2) has significantly higher explanatory power than the model with
fewer explanatory variables (SmokeRes1).
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