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1 Model Specification

The general specification of an interval regression model with sample selection is:

yS∗i = βS ′
xS
i + εSi (1)

ySi =

{

0 if yS∗i ≤ 0

1 otherwise
(2)

yO∗
i = βO ′

xO
i + εOi (3)

yOi =



































unknown if ySi = 0

1 if α1 < yO∗
i ≤ α2 and ySi = 1

2 if α2 < yO∗
i ≤ α3 and ySi = 1

...

M if αM < yO∗
i ≤ αM+1 and ySi = 1

(4)

(

εSi
εOi

)

∼ N2

((

0
0

)

,

[

1 ρσ
ρσ σ2

])

, (5)

where subscript i indicates the observation, yO∗
i is a latent outcome variable, yOi is a

partially observed categorical variable that indicates in which interval yO∗
i lies, M is the

number of intervals, α1, . . . , αM+1 are the boundaries of the intervals (whereas frequently
but not necessarily α1 = −∞ and αM+1 = ∞), ySi is a binary variable that indicates
whether yOi is observed, yS∗i is a latent variable that indicates the “tendency” that ySi is
one, xS

i and xO
i are (column) vectors of explanatory variables for the selection equation

and outcome equation, respectively, εSi and εOi are random disturbance terms that have
a joint bivariate normal distribution, and βS and βO are (column) vectors and ρ and σ
are scalars of unknown model parameters.
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2 Log-Likelihood Function

The probability that yOi is unobserved is:

P
(

ySi = 0
)

= P
(

yS∗i ≤ 0
)

(6)

= P
(

βS ′
xS
i + εSi ≤ 0

)

(7)

= P
(

εSi ≤ −βS ′
xS
i

)

(8)

The probability that yOi is observed and indicates that yO∗
i lies in the mth interval is:

P
(

ySi = 1 ∧ yOi = m
)

= P
(

yS∗i > 0 ∧ αm < yO∗
i ≤ αm+1

)

(9)

= P
(

βS ′
xS
i + εSi > 0 ∧ αm < βO ′

xO
i + εOi ≤ αm+1

)

(10)

= P
(

εSi > −βS ′
xS
i ∧ αm − βO ′

xO
i < εOi ≤ αm+1 − βO ′

xO
i

)

(11)

The log-likelihood contribution of the ith observation is:

ℓi =(1− ySi ) ln
[

Φ
(

−βS ′
xS
i

)]

(12)

+
M
∑

m=1

ySi (y
O
i = m) ln

[

Φ2

(

αm+1 − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

−Φ2

(

αm − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)]

,

where Φ(.) indicates the cumulative distribution function of the univariate standard nor-
mal distribution and Φ2(.) indicates the cumulative distribution function of the bivariate
standard normal distribution.

3 Restricting coefficients ρ and σ
2

The parameter ρ needs to be in the interval (−1, 1). In order to restrict ρ to be in
this interval, we estimate arctan(ρ) instead of ρ so that the derived parameter ρ =
tan(arctan(ρ)) is always in the interval (−1, 1). We use the delta method to calculate
approximate standard errors of the derived parameter ρ, whereas the corresponding ele-
ment of the Jacobian matrix is:

∂ tan(arctan(ρ))

∂ arctan(ρ)
=

∂ρ

∂ arctan(ρ)
= (1 + ρ2) (13)

The parameter σ needs to be strictly positive, i.e. σ > 0. In order to restrict σ to be
strictly positive, we estimate log(σ) instead of σ or σ2 so that the derived parameters
σ = exp(log(σ)) and σ2 = exp(2 log(σ)) are always strictly positive. We use the delta
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method to calculate approximate standard errors of the derived parameters σ and σ2,
whereas the corresponding elements of the Jacobian matrix are:

∂ exp(log(σ))

∂ log(σ)
= exp(log(σ)) = σ (14)

∂ exp(2 log(σ))

∂ log(σ)
= 2 exp(2 log(σ)) = 2 σ2 (15)

4 Gradients of the CDF of the bivariate standard normal

distribution

In order to facilitate the calculation of the gradients of the log-likelihood function, we
calculate the partial derivatives of the cumulative distribution function (CDF) of the
bivariate standard normal distribution:

Φ2(x1, x2, ρ) =

∫ x2

−∞

∫ x1

−∞
ϕ2(a1, a2, ρ) da1 da2, (16)

where ϕ2(.) is the probability density function (PDF) of the bivariate standard normal
distribution:

ϕ2(x1, x2, ρ) =
1

2π
√

1− ρ2
· exp

(

−x21 − 2ρx1x2 + x22
2(1− ρ2)

)

(17)

In the following, we check equation (17) by a simple numerical example:

> library( "mvtnorm" )

> library( "maxLik" )

> x1 <- 0.4

> x2 <- -0.3

> rho <- -0.6

> sigma <- matrix( c( 1, rho, rho, 1 ), nrow = 2 )

> dens <- dmvnorm( c( x1, x2 ), sigma = sigma )

> print( dens )

[1] 0.1831324

> all.equal( dens, ( 2 * pi * sqrt( 1 - rho^2 ) )^(-1) *

+ exp( - ( x1^2 - 2 * rho * x1 * x2 + x2^2 ) / ( 2 * ( 1 - rho^2 ) ) ) )

[1] TRUE
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4.1 Gradients with respect to the limits (x1 and x2)

∂Φ2(x1, x2, ρ)

∂x2
=

∫ x1

−∞
ϕ2(a1, x2, ρ) da1 (18)

=

∫ x1

−∞
ϕ(a1|x2, ρ)ϕ(x2) da1 (19)

=

∫ x1

−∞
ϕ̃
(

a1, ρx2, 1− ρ2
)

ϕ(x2) da1 (20)

=

∫ x1

−∞
ϕ

(

a1 − ρx2
√

1− ρ2

)

(

√

1− ρ2
)−1

ϕ(x2) da1 (21)

=

∫ x1

−∞
ϕ

(

a1 − ρx2
√

1− ρ2

)

(

√

1− ρ2
)−1

da1 ϕ(x2) (22)

=

∫
x1−ρx2√

1−ρ2

−∞
ϕ(a1) da1 ϕ(x2) (23)

= Φ

(

x1 − ρx2
√

1− ρ2

)

ϕ(x2), (24)

where ϕ̃( , µ, σ2) indicates the density function of a normal distribution with mean µ and
variance σ2.

In the following, we use the same simple numerical example as in the beginning of
section 4 to check the above derivations. First, we check whether the PDF of the bi-
variate standard normal distribution, i.e. ϕ2(x1, x2, ρ) (part of equation 18), is equal to

ϕ̃
(

x1, ρx2, 1− ρ2
)

ϕ(x2) (part of equation 20) and equal to ϕ
(

(x1 − ρx2)/(
√

1− ρ2)
)

(

√

1− ρ2
)−1

ϕ(x2) (part of equations 21 and 22):

> all.equal( dens, dnorm( x1, rho * x2, sqrt( 1 - rho^2 ) ) * dnorm(x2) )

[1] TRUE

> all.equal( dens, ( dnorm( ( x1 - rho * x2 ) / sqrt( 1 - rho^2 ) ) /

+ sqrt( 1 - rho^2 ) ) * dnorm(x2) )

[1] TRUE

In the following, we will numerically calculate the derivative of the cumulative distri-
bution function of the bivaraite normal distribution (equation 16) with respect to x2 and
check wehther this partial derivative is equal to the right-hand sides of equations (18),
(21), (22), and (24):

> funX2 <- function( a2 ) {

+ prob <- pmvnorm( upper = c( x1, a2 ), sigma = sigma )
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+ return( prob )

+ }

> grad <- c( numericGradient( funX2, x2 ) )

> print( grad )

[1] 0.2320142

> funX1 <- function( a1 ) {

+ dens <- rep( NA, length( a1 ) )

+ for( i in 1:length( a1 ) ) {

+ dens[i] <- dmvnorm( c( a1[i], x2 ), sigma = sigma )

+ }

+ return( dens )

+ }

> all.equal( grad, integrate( funX1, lower = -Inf, upper = x1 )$value )

[1] TRUE

> funX1a <- function( a1 ) {

+ dens <- rep( NA, length( a1 ) )

+ for( i in 1:length( a1 ) ) {

+ dens[i] <- ( dnorm( ( a1[i] - rho * x2 ) / sqrt( 1 - rho^2 ) ) /

+ sqrt(1-rho^2) ) * dnorm(x2)

+ }

+ return( dens )

+ }

> all.equal( grad, integrate( funX1a, lower = -Inf, upper = x1 )$value )

[1] TRUE

> funX1b <- function( a1 ) {

+ dens <- rep( NA, length( a1 ) )

+ for( i in 1:length( a1 ) ) {

+ dens[i] <- dnorm( ( a1[i] - rho * x2 ) / sqrt( 1 - rho^2 ) ) /

+ sqrt(1-rho^2)

+ }

+ return( dens )

+ }

> all.equal( grad,

+ integrate( funX1b, lower = -Inf, upper = x1 )$value * dnorm(x2) )

[1] TRUE

> all.equal( grad,

+ pnorm( ( x1 - rho * x2 ) / sqrt( 1 - rho^2 ) ) * dnorm( x2 ) )

[1] TRUE
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4.2 Gradients with respect to the coefficient of correlation (ρ)

∂Φ2(x1, x2, ρ)

∂ρ
(25)

=
∂
[

∫ x1

−∞

∫ x2

−∞ ϕ2(a1, a2, ρ) da2 da1

]

∂ρ
(26)

=

∫ x1

−∞

∫ x2

−∞

∂ϕ2(a1, a2, ρ)

∂ρ
da2 da1 (27)

=

∫ x1

−∞

∫ x2

−∞

∂

∂ρ









exp

(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)

2π
√

1− ρ2









da2 da1 (28)

=

∫ x1

−∞

∫ x2

−∞

1

2π

∂

∂ρ









exp

(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)

√

1− ρ2









da2 da1 (29)

=

∫ x1

−∞

∫ x2

−∞

1

2π









∂

∂ρ

(

exp

(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

))

·
√

1− ρ2

1− ρ2
(30)

−

∂

∂ρ
(
√

1− ρ2) · exp
(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)

1− ρ2









da2 da1

=

∫ x1

−∞

∫ x2

−∞

1

2π









∂

∂ρ

(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)

· exp
(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)

·
√

1− ρ2

1− ρ2

(31)

−

(

− ρ
√

1− ρ2

)

· exp
(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)

1− ρ2













da2 da1
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=

∫ x1

−∞

∫ x2

−∞

1

2π











(

−4ρ(a21 − 2ρa1a2 + a22)− 2(1− ρ2)(−2a1a2)
)

4(1− ρ2)2
· exp

(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)

·
√

1− ρ2

1− ρ2

(32)

−

(

− ρ
√

1− ρ2

)

· exp
(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)

1− ρ2













da2 da1

=

∫ x1

−∞

∫ x2

−∞

1

2π













(

−4ρ(a21 − 2ρa1a2 + a22)− 2(1− ρ2)(−2a1a2)
)

4(1− ρ2)2
·
√

1− ρ2

1− ρ2
−

(

− ρ
√

1− ρ2

)

1− ρ2













(33)

· exp
(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)

da2 da1

=

∫ x1

−∞

∫ x2

−∞

1

2π

(

(

−4ρ(a21 − 2ρa1a2 + a22)− 2(1− ρ2)(−2a1a2)
)

4(1− ρ2)
5

3

+
ρ

(1− ρ2)
3

2

)

(34)

· exp
(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)

da2 da1

=

∫ x1

−∞

∫ x2

−∞

1

2π

(

(

−4ρ(a21 − 2ρa1a2 + a22)− 2(1− ρ2)(−2a1a2)
)

4(1− ρ2)
5

2

+
ρ

(1− ρ2)
3

2

)

(35)

· exp
(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)

da2 da1

=

∫ x1

−∞

∫ x2

−∞

1

2π

(

ρ

(1− ρ2)
3

2

− ρ(a21 − ρa1a2 + a22)− a1a2

(1− ρ2)
5

2

)

(36)

· exp
(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)

da2 da1

=
1

2π
√

(1− ρ2)

∫ x1

−∞

∫ x2

−∞

(

ρ

1− ρ2
− ρ(a21 − ρa1a2 + a22)− a1a2

(1− ρ2)2

)

(37)

· exp
(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)

da2 da1
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=
1

2π
√

(1− ρ2)

∫ x1

−∞

∣

∣

∣

∣

(

−2a1 − 2ρa2
2(1− ρ2)

)

· exp
(

−a21 − 2ρa1a2 + a22
2(1− ρ2)

)∣

∣

∣

∣

x2

−∞
da1 (38)

=
1

2π
√

(1− ρ2)

∫ x1

−∞

((

−2a1 − 2ρx2
2(1− ρ2)

)

· exp
(

−a21 − 2ρa1x2 + x22
2(1− ρ2)

)

(39)

− lim
a2→−∞

1

2(1− ρ2)

−2a1 + 2ρa2

exp

(

a21 − 2ρa1a2 + a22
2(1− ρ2)

)









da1

Applying L’Hospital on the last term leads to

=
1

2π
√

(1− ρ2)

∫ x1

−∞

((

−2a1 − 2ρx2
2(1− ρ2)

)

· exp
(

−a21 − 2ρa1x2 + x22
2(1− ρ2)

)

− 0

)

da1 (40)

=
1

2π
√

(1− ρ2)

∫ x1

−∞

(

−2a1 − 2ρx2
2(1− ρ2)

)

· exp
(

−a21 − 2ρa1x2 + x22
2(1− ρ2)

)

da1 (41)

=
1

2π
√

(1− ρ2)

∣

∣

∣

∣

exp

(

−a21 − 2ρa1x2 + x22
2(1− ρ2)

)∣

∣

∣

∣

x1

−∞
(42)

=
1

2π
√

(1− ρ2)
· exp

(

−x21 − 2ρx1x2 + x22
2(1− ρ2)

)

(43)

=ϕ2(x1, x2, ρ) (44)

This result is in line with Sibuya (1960) and Sungur (1990).
In the following, we will numerically calculate the derivative of the cumulative distri-

bution function of the bivariate normal distribution (equation 26) with respect to ρ and
check whether this partial derivative is equal to the right-hand sides of equation (44):

> # Numerical gradient of the PDF w.r.t. rho

> funrho <- function( p ) {

+ prob <- dmvnorm( x = c( x1, x2 ),

+ sigma = matrix( c( 1, p, p, 1 ), nrow = 2 ) )

+ return( prob )

+ }

> grad <- c( numericGradient( funrho, rho ) )

> print( grad )

[1] -0.1775883

> # Comparison with analytical gradient for rho

> efun <- exp(-(x1^2 - 2 * rho * x1 * x2 + x2^2)/(2*(1 - rho^2)))
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> all.equal( grad,

+ ( (-((2*rho*(-2*rho*x1*x2+x1^2+x2^2) - 2*x1*x2*(1-rho^2)) * efun)/

+ (2*(1-rho^2)^(3/2) )) +

+ ((rho*efun)/(sqrt(1-rho^2))) ) /

+ (2*pi*(1-rho^2)) )

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

> # Numerical gradient of the CDF w.r.t. rho

> cdfRho <- function( p, xa = x1, xb = x2 ) {

+ prob <- pmvnorm( upper = c( xa, xb ),

+ sigma = matrix( c( 1, p, p, 1 ), nrow = 2 ) )

+ return( prob )

+ }

> grad <- c( numericGradient( cdfRho, rho ) )

> print( grad )

[1] 0.1831324

> # comparison with analytical gradient

> all.equal( grad, dmvnorm( x = c( x1, x2 ),

+ sigma = matrix( c( 1, rho, rho, 1 ), nrow = 2 ) ) )

[1] TRUE

> # comparisons with other values

> compDerivRho <- function( xa, xb, p ) {

+ dn <- c( numericGradient( cdfRho, p, xa = xa, xb = xb ) )

+ da <- dmvnorm( x = c( xa, xb ),

+ sigma = matrix( c( 1, p, p, 1 ), nrow = 2 ) )

+ return( all.equal( dn, da ) )

+ }

> compDerivRho( x1, x2, rho )

[1] TRUE

> compDerivRho( 0.5, x2, rho )

[1] TRUE
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> compDerivRho( 2.5, x2, rho )

[1] TRUE

> compDerivRho( x1, -2, rho )

[1] TRUE

> compDerivRho( x1, x2, 0.2 )

[1] TRUE

> compDerivRho( x1, x2, 0.98 )

[1] TRUE
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5 Gradients of the Log-Likelihood Function

5.1 Gradients with respect to the parameters of the selection
equation (βS)

First, we use equation (24), to determine the derivative of the bivariate standard normal
distribution with respect to the parameter βS as part of the loglikelihood function:

∂Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

∂βS
= Φ





αm−βO ′

xO
i

σ
− ρβS ′

xS
i

√

1− ρ2



ϕ(βS ′
xS
i ) ·

∂βS ′
xS
i

∂βS
(45)

= Φ





αm−βO ′

xO
i

σ
+ ρβS ′

xS
i

√

1− ρ2



ϕ(βS ′
xS
i ) · xS

i (46)

Using this result we can now derive the gradient for βS in the log-likelihood function:

∂ℓi
∂βS

=
∂

∂βS

(

(1− ySi ) ln
[

Φ
(

−βS ′
xS
i

)]

(47)

+
M
∑

m=1

ySi (y
O
i = m) ln

[

Φ2

(

αm+1 − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

−Φ2

(

αm − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)])

= (1− ySi )
∂

∂βS

(

ln
[

Φ
(

−βS ′
xS
i

)]

)

(48)

+
M
∑

m=1

ySi (y
O
i = m)

∂

∂βS

(

ln

[

Φ2

(

αm+1 − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

−Φ2

(

αm − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)])

= (1− ySi )
ϕ
(

−βS ′
xS
i

)

·
(

−xS
i

)

Φ
(

−βS ′
xS
i

) (49)

+
M
∑

m=1

ySi (y
O
i = m)

∂Φ2

(

αm+1−βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

∂βS −
∂Φ2

(

αm−βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

∂βS

Φ2

(

αm+1−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

− Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)
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= (1− ySi )
ϕ
(

−βS ′
xS
i

)

·
(

−xS
i

)

Φ
(

−βS ′
xS
i

) (50)

+

M
∑

m=1

ySi (y
O
i = m)

1

Φ2

(

αm+1−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

− Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)



Φ





αm+1−βO ′

xO
i

σ
+ ρβS ′

xS
i

√

1− ρ2



ϕ
(

βS ′
xS
i

)

· xS
i

− Φ





αm−βO ′

xO
i

σ
+ ρβS ′

xS
i )

√

1− ρ2



ϕ
(

βS ′
xS
i

)

· xS
i





= (1− ySi )
ϕ
(

−βS ′
xS
i

)

·
(

−xS
i

)

Φ
(

−βS ′
xS
i

) (51)

+

M
∑

m=1

ySi (y
O
i = m)

(

Φ

(

αm+1−βO ′
xO
i

σ
+ρβS ′

xS
i√

1−ρ2

)

− Φ

(

αm−βO ′
xO
i

σ
+ρβS ′

xS
i√

1−ρ2

))

ϕ
(

βS ′
xS
i

)

· xS
i

Φ2

(

αm+1−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

− Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)
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5.2 Gradients with respect to the parameters in the outcome
equation (βO)

Analogous to βS and by using equation (24) we derive the gradient of βO:

∂Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

∂βO
= Φ





βS ′
xS
i + ρ

αm−βO ′

xO
i

σ
√

1− ρ2



ϕ

(

αm − βO ′
xO
i

σ

)

·
(

−xO
i

σ

)

(52)

Using this result we derive the gradient for the outcome parameter βO for the log-
likelihood function:

∂ℓi
∂βO

=
∂

∂βO

(

(1− ySi ) ln
[

Φ
(

−βS ′
xS
i

)]

(53)

+

M
∑

m=1

ySi (y
O
i = m) ln

[

Φ2

(

αm+1 − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

−Φ2

(

αm − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)])

=
M
∑

m=1

ySi (y
O
i = m)

∂

∂βO

(

ln

[

Φ2

(

αm+1 − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

(54)

−Φ2

(

αm − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)])

=

M
∑

m=1

ySi (y
O
i = m)

∂Φ2

(

αm+1−βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

∂βO −
∂Φ2

(

αm−βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

∂βO

Φ2

(

αm+1−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

− Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

(55)

=

M
∑

m=1

ySi (y
O
i = m) · 1

Φ2

(

αm+1−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

− Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

(56)


Φ





βS ′
xS
i + ρ

αm+1−βO ′

xO
i

σ
√

1− ρ2



ϕ

(

αm+1 − βO ′
xO
i

σ

)

·
(

−xO
i

σ

)

−Φ





βS ′
xS
i + ρ

αm−βO ′

xO
i

σ
√

1− ρ2



ϕ

(

αm − βO ′
xO
i

σ

)

·
(

−xO
i

σ

)




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=

M
∑

m=1

ySi (y
O
i = m) · 1

Φ2

(

αm+1−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

− Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

(57)


Φ





βS ′
xS
i + ρ

αm+1−βO ′

xO
i

σ
√

1− ρ2



ϕ

(

αm+1 − βO ′
xO
i

σ

)

−Φ





βS ′
xS
i + ρ

αm−βO ′

xO
i

σ
√

1− ρ2



ϕ

(

αm − βO ′
xO
i

σ

)



 ·
(

−xO
i

σ

)

5.3 Gradients with respect to the coefficient of correlation (ρ)

Given the result that the derivative of the CDF with respect to ρ is equal to the PDF
(see equation 44), we can also derive the gradient of the correlation parameter (ρ):

∂ℓi
∂ρ

=
∂

∂ρ

(

(1− ySi ) ln
[

Φ
(

−βS ′
xS
i

)]

(58)

+
M
∑

m=1

ySi (y
O
i = m) ln

[

Φ2

(

αm+1 − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

−Φ2

(

αm − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)])

=
M
∑

m=1

ySi (y
O
i = m)

∂

∂ρ

(

ln

[

Φ2

(

αm+1 − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

(59)

−Φ2

(

αm − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)])

=

M
∑

m=1

ySi (y
O
i = m)

ϕ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

− ϕ2

(

αm+1−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

Φ2

(

αm+1−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

− Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

) (60)

∂ℓi
∂ arctanh(ρ)

=
∂ℓi
∂ρ

∂ρ

∂ arctanh(ρ)
=

∂ℓi
∂ρ

(1− ρ2) (61)

5.4 Gradients with respect to the standard deviation used for
normalisation (σ)

Finally, we derive the gradient for σ in the same way as we did for βS and βO:
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∂Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

∂σ

= Φ





βS ′
xS
i + ρ

αm−βO ′

xO
i

σ
√

1− ρ2



ϕ

(

αm − βO ′
xO
i

σ

)

· β
O ′
xO
i − αm

σ2
(62)

lim
αm→∞

∂Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

∂σ

= lim
αm→∞

Φ





βS ′
xS
i + ρ

αm−βO ′

xO
i

σ
√

1− ρ2



ϕ

(

αm − βO ′
xO
i

σ

)

· β
O ′
xO
i − αm

σ2
(63)

= Φ





βS ′
xS
i + ρ

αm−βO ′

xO
i

σ
√

1− ρ2



 lim
αm→∞

ϕ

(

αm − βO ′
xO
i

σ

)

· β
O ′
xO
i − αm

σ2
(64)

= Φ





βS ′
xS
i + ρ

αm−βO ′

xO
i

σ
√

1− ρ2



 lim
αm→∞

βO ′

xO
i −αm

σ2

(

ϕ

(

αm−βO ′

xO
i

σ

))−1
(65)

= Φ





βS ′
xS
i + ρ

αm−βO ′

xO
i

σ
√

1− ρ2



 (66)

lim
αm→∞

− 1

σ2

−
(

ϕ

(

αm−βO ′

xO
i

σ

))−2(

−αm−βO ′

xO
i

σ

)

ϕ

(

αm−βO ′

xO
i

σ

)

1

σ

= Φ





βS ′
xS
i + ρ

αm−βO ′

xO
i

σ
√

1− ρ2



 lim
αm→∞

− 1

σ
(

ϕ

(

αm−βO ′

xO
i

σ

))−1
αm−βO ′

xO
i

σ

(67)

= Φ





βS ′
xS
i + ρ

αm−βO ′

xO
i

σ
√

1− ρ2



 lim
αm→∞

− 1

σ
ϕ

(

αm−βO ′

xO
i

σ

)

αm−βO ′

xO
i

σ

(68)

= 0 (69)

Similarly:

lim
αm→−∞

∂Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

∂σ
= 0 (70)
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∂ℓi
∂σ

=
∂

∂σ

(

(1− ySi ) ln
[

Φ
(

−βS ′
xS
i

)]

(71)

+
M
∑

m=1

ySi (y
O
i = m) ln

[

Φ2

(

αm+1 − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

−Φ2

(

αm − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)])

=

M
∑

m=1

ySi (y
O
i = m)

∂

∂σ

(

ln

[

Φ2

(

αm+1 − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

(72)

−Φ2

(

αm − βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)])

=

M
∑

m=1

ySi (y
O
i = m)

∂Φ2

(

αm+1−βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

∂σ
−

∂Φ2

(

αm−βO ′
xO
i

σ
,βS ′

xS
i ,−ρ

)

)

∂σ

Φ2

(

αm+1−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

− Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

(73)

=

M
∑

m=1

ySi (y
O
i = m)

Φ2

(

αm+1−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

)

− Φ2

(

αm−βO ′

xO
i

σ
,βS ′

xS
i ,−ρ

) (74)



Φ





βS ′
xS
i + ρ

αm+1−βO ′

xO
i

σ
√

1− ρ2



ϕ

(

αm+1 − βO ′
xO
i

σ

)

· β
O ′
xO
i − αm+1

σ2

− Φ





βS ′
xS
i + ρ

αm−βO ′

xO
i

σ
√

1− ρ2



ϕ

(

αm − βO ′
xO
i

σ

)

· β
O ′
xO
i − αm

σ2





∂ℓi
∂ log(σ)

=
∂ℓi
∂σ

∂σ

∂ log(σ)
=

∂ℓi
∂σ

σ (75)

6 Example with a Generated Dataset

7 Generate Dataset

> library( "mvtnorm" )

> # number of observations

> nObs <- 300

> # parameters
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> betaS <- c( 1, 1, -1 )

> betaO <- c( 10, 4 )

> rho <- 0.4

> sigma <- 5

> # boundaries of the intervals

> bound <- c(-Inf,5,15,Inf)

> # set 'seed' of the pseudo random number generator

> # in order to always generate the same pseudo random numbers

> set.seed(123)

> # generate variables x1 and x2

> dat <- data.frame( x1 = rnorm( nObs ), x2 = rnorm( nObs ) )

> # variance-covariance matrix of the two error terms

> vcovMat <- matrix( c( 1, rho*sigma, rho*sigma, sigma^2 ), nrow = 2 )

> # generate the two error terms

> eps <- rmvnorm( nObs, sigma = vcovMat )

> dat$epsS <- eps[,1]

> dat$epsO <- eps[,2]

> # generate the selection variable

> dat$yS <- with( dat, betaS[1] + betaS[2] * x1 + betaS[3] * x2 + epsS ) > 0

> table( dat$yS )

FALSE TRUE

91 209

> # generate the unobserved/latent outcome variable

> dat$yOu <- with( dat, betaO[1] + betaO[2] * x1 + epsO )

> dat$yOu[ !dat$yS ] <- NA

> # obtain the intervals of the outcome variable

> dat$yO <- cut( dat$yOu, bound )

> table( dat$yO )

(-Inf,5] (5,15] (15, Inf]

26 130 53

7.1 Estimation of the Model

In the following estimation, the starting values are obtained by a maximum-likelihood
(ML) estimation of a tobit-2 model, where the dependent variable of the outcome equa-
tion is set to the mid points of the intervals:

> library( "sampleSelection" )

> res <- selection( yS ~ x1 + x2, yO ~ x1, data = dat, boundaries = bound )

> res

Call:

selection(selection = yS ~ x1 + x2, outcome = yO ~ x1, data = dat, boundaries = bound)
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Coefficients:

S:(Intercept) S:x1 S:x2 O:(Intercept) O:x1

0.9820 0.9668 -1.2862 10.2403 2.6598

logSigma atanhRho sigma sigmaSq rho

1.6308 0.2988 5.1077 26.0890 0.2902

> summary( res )

--------------------------------------------

Tobit 2 model with interval outcome (sample selection model)

Maximum Likelihood estimation

BHHH maximisation, 21 iterations

Return code 8: successive function values within relative tolerance limit (reltol)

Log-Likelihood: -275.395

300 observations (91 censored and 209 observed)

Intervals of the dependent variable of the outcome equation:

YO lower upper count

1 (-Inf,5] -Inf 5 26

2 (5,15] 5 15 130

3 (15, Inf] 15 Inf 53

7 free parameters (df = 293)

Probit selection equation:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9820 0.1085 9.049 < 2e-16 ***

x1 0.9668 0.1491 6.484 3.78e-10 ***

x2 -1.2862 0.1209 -10.637 < 2e-16 ***

Outcome equation:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.2403 0.6681 15.328 < 2e-16 ***

x1 2.6598 0.5921 4.492 1.02e-05 ***

Error terms:

Estimate Std. Error t value Pr(>|t|)

logSigma 1.63076 0.07474 21.820 < 2e-16 ***

atanhRho 0.29881 0.36188 0.826 0.410

sigma 5.10774 0.38174 13.380 < 2e-16 ***

sigmaSq 26.08901 3.89971 6.690 1.13e-10 ***

rho 0.29022 0.33140 0.876 0.382

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

--------------------------------------------

In the following estimation, the starting values are obtained by a two-step estimation
of a tobit-2 model, where the dependent variable of the outcome equation is set to the
mid points of the intervals:
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> res2 <- selection( yS ~ x1 + x2, yO ~ x1, data = dat, boundaries = bound,

+ start = "2step" )

> res2

Call:

selection(selection = yS ~ x1 + x2, outcome = yO ~ x1, data = dat, start = "2step", boundari

Coefficients:

S:(Intercept) S:x1 S:x2 O:(Intercept) O:x1

0.9820 0.9668 -1.2862 10.2403 2.6598

logSigma atanhRho sigma sigmaSq rho

1.6308 0.2988 5.1077 26.0890 0.2902

> summary( res2 )

--------------------------------------------

Tobit 2 model with interval outcome (sample selection model)

Maximum Likelihood estimation

BHHH maximisation, 21 iterations

Return code 8: successive function values within relative tolerance limit (reltol)

Log-Likelihood: -275.395

300 observations (91 censored and 209 observed)

Intervals of the dependent variable of the outcome equation:

YO lower upper count

1 (-Inf,5] -Inf 5 26

2 (5,15] 5 15 130

3 (15, Inf] 15 Inf 53

7 free parameters (df = 293)

Probit selection equation:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9820 0.1085 9.049 < 2e-16 ***

x1 0.9668 0.1491 6.484 3.78e-10 ***

x2 -1.2862 0.1209 -10.637 < 2e-16 ***

Outcome equation:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.2403 0.6681 15.328 < 2e-16 ***

x1 2.6598 0.5921 4.492 1.02e-05 ***

Error terms:

Estimate Std. Error t value Pr(>|t|)

logSigma 1.63076 0.07474 21.820 < 2e-16 ***

atanhRho 0.29880 0.36188 0.826 0.410

sigma 5.10774 0.38174 13.380 < 2e-16 ***

sigmaSq 26.08900 3.89970 6.690 1.13e-10 ***

rho 0.29021 0.33140 0.876 0.382
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---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

--------------------------------------------

The following commands compare the starting values and the estimated coefficients:

> # compare starting values (small differences)

> cbind( res$start, res2$start, res$start - res2$start )

[,1] [,2] [,3]

(Intercept) 0.9818072 0.9800827 0.001724574

x1 0.9663185 0.9686013 -0.002282885

x2 -1.2866893 -1.2808419 -0.005847461

(Intercept) 10.3990738 10.3516223 0.047451510

x1 3.7408112 3.7642665 -0.023455273

logSigma 4.2797893 4.2813219 -0.001532652

atanhRho 0.2362382 0.2550566 -0.018818413

> # combare estimated coefficients (virtually identical)

> cbind( coef( res ), coef( res2 ), coef( res ) - coef( res2 ) )

[,1] [,2] [,3]

(Intercept) 0.9820207 0.9820209 -2.186942e-07

x1 0.9667788 0.9667789 -1.484320e-07

x2 -1.2862335 -1.2862333 -2.546365e-07

(Intercept) 10.2402931 10.2403019 -8.764296e-06

x1 2.6597945 2.6597881 6.368136e-06

logSigma 1.6307571 1.6307570 1.082407e-07

atanhRho 0.2988073 0.2988007 6.581781e-06

sigma 5.1077402 5.1077397 5.528652e-07

sigmaSq 26.0890100 26.0890044 5.647783e-06

rho 0.2902207 0.2902147 6.027421e-06

8 Example with the ‘Smoke’ dataset

The following command loads the dataset:

> data( "Smoke" )

The following command creates a vector with the boundaries of the intervals:

> bounds <- c( 0, 5, 10, 20, 50, Inf )

The following command estimates the model with few explanatory variables:

> SmokeRes1 <- selection( smoker ~ educ + age,

+ cigs_intervals ~ educ, data = Smoke, boundaries = bounds )
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The following command estimates the model with more explanatory variables:

> SmokeRes2 <- selection( smoker ~ educ + age + restaurn,

+ cigs_intervals ~ educ + income + restaurn, data = Smoke,

+ boundaries = bounds )

The following commands test whether adding further explanatory variables signifi-
cantly improves the explanatory power of the model:

> library( "lmtest" )

> lrtest( SmokeRes1, SmokeRes2 )

Likelihood ratio test

Model 1: selection(selection = smoker ~ educ + age, outcome = cigs_intervals ~

educ, data = Smoke, boundaries = bounds)

Model 2: selection(selection = smoker ~ educ + age + restaurn, outcome = cigs_intervals ~

educ + income + restaurn, data = Smoke, boundaries = bounds)

#Df LogLik Df Chisq Pr(>Chisq)

1 7 -940.54

2 10 -936.30 3 8.4705 0.03723 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> waldtest( SmokeRes1, SmokeRes2 )

Wald test

Model 1: selection(selection = smoker ~ educ + age, outcome = cigs_intervals ~

educ, data = Smoke, boundaries = bounds)

Model 2: selection(selection = smoker ~ educ + age + restaurn, outcome = cigs_intervals ~

educ + income + restaurn, data = Smoke, boundaries = bounds)

Res.Df Df Chisq Pr(>Chisq)

1 800

2 797 3 7.8636 0.04892 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Both tests indicate that—at 5% significance level—the model with more explanatory
variables (SmokeRes2) has significantly higher explanatory power than the model with
fewer explanatory variables (SmokeRes1).
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