Package ‘mfdb’

January 24, 2026

Type Package

Title MareFrame DB Querying Library

Encoding UTF-8

Version 7.4-0

Date 2026-01-24

Maintainer Jamie Lentin <lentinj@shuttlethread.com>

Description Creates and manages a PostgreSQL database suitable for storing fisheries data
and aggregating ready for use within a Gadget <https:
//gadget-framework.github.io/gadget2/> model.

See <https://mareframe.github.io/mfdb/> for more information.

License GPL-3
Depends R (>=4.2.0)

Imports logging (>= 0.7-103), DBI (>= 0.3.1), duckdb (>= 0.2.5),
getPass (>=0.1-1), rlang (>= 0.4.0)

Suggests dplyr (>= 0.8.3), dbplyr (>= 2.0.0), knitr, rmarkdown,
RPostgres (>= 1.3.0), RSQLite, unittest (>= 1.5-0)

VignetteBuilder knitr
LazyData true
NeedsCompilation no

Author Jamie Lentin [aut, cre, cph],
Bjarki Thor Elvarsson [aut]

Repository CRAN
Date/Publication 2026-01-24 11:50:02 UTC

Contents

mfdb-package
ewe_model L s
gadget_areafile e
gadget_directory

https://gadget-framework.github.io/gadget2/
https://gadget-framework.github.io/gadget2/
https://mareframe.github.io/mfdb/

2 mfdb-package

gadget_file. e e e 9
gadget_fleetfile 11
gadget_likelihood_component L 0oL 13
gadget_stockfile L 16
mfdb . . . e 17
mfdb-data 19
mfdb_aggregate_group e e e 20
mfdb_aggregate_interval Lo 21
mfdb_aggregate_na_group 22
mfdb_aggregate_step_interval 22
mfdb_aggregate_unaggregated 23
mfdb_bulk 24
mfdb_dplyr 25
mfdb_helpers 26
mfdb_helpers_mfdb_concatenate_results oL 27
mfdb_import_data. e e 28
mfdb_import_taxonomyo e e 31
mfdb_queries e 34
mfdb_sharing 37
Index 39
mfdb-package MareFrame DB querying library
Description

Tools to query a MareFrame DB and reformat results in forms useful for GADGET and EwWE mod-
els.

Introduction & Schema description

Before doing anything with mfdb, it is worth knowing a bit about how data is stored. Broadly, there
are 2 basic types of table in mfdb, taxonomy and measurement tables.

The measurement tables store all forms of sample data supported, at the finest available detail.
These are then aggregated when using any of the mfdb query functions. All measurement data is
separated by case study, so multiple case studies can be loaded into a database without conflicts.

Taxonomy tables store all possible values for terms and their meaning, to ensure consistency in
the data. For example, ‘species’ stores short-names and full latin names of all known species to
MFDB, to ensure consistency in naming.

Most Taxonomies have defaults which are populated when the database is created, and their defi-
nitions are stored as data attached to this package. See mfdb-data for more information on these.
Others, such as ‘areacell’ and ‘sampling_type’ are case study specific, and you will need to
define your terms before you can import data.

mfdb-package 3

Importing data

Unless you are working with a remote database, you will need to populate the database at least once
before you are able to do any querying. The steps your script needs to do are:

Connect to database: Use the mfdb() function. This will create tables / populate taxonomies if
necessary.

Define areas & divisions: mfdb models space in the following way:

areacell The finest level of detail stored in the database. Every measurement (e.g. temperature,
length sample) is assigned to an areacell. This will generally correspond to ICES gridcells,
however there is no requirement to do so. You might augment gridcell information with
depth, or include divisions when the measurement doesn’t correlate to a specific areacell.

division Collections of areacells, e.g. ICES subdivisions, or whatever is appropriate.

Finally, when querying, divisions are grouped together into named collections, for instance mfdb_group (north
=1:3, south = 4:6) will put anything in divisions 1-3 under an area named "north", 4-5 under
an area named "south".

Before you can upload any measurements, you have to define the areacells that they will use. You

do this using the mfdb_import_area() function. This allows you to import tables of area/division
information, such as:

mfdb_import_area(mdb, data.frame(area=c('101', '102', '103"', '401', '402', '403"),
division=c('1", "1', "1', 4", "4', 4",)

If you want areas to be part of multiple divisions, then you can use mfdb_import_division() to
import extra revisions.

Define sampling types: Any survey data can have a sampling type defined, which then can be
used when querying data. If you want to use a sampling type, then define it using mfdb_import_sampling_type().

Import temperature data: At this point, you can start uploading actual measurements. The easi-
est of which is temperature. Upload a table of areacell/month/temperature data using mfdb_import_temperature().

Import survey data: Finally, import any survey data using mfdb_import_survey(). Ideally
upload your data in separate chunks. For example, if you have length and age-length data, don’t
combine them in R, upload them separately and both will be used when querying for length data.
This keeps the process simple, and allows you to swap out data as necessary.

Import stomach survey: Stomach surveys are imported in much the same way, however there
are 2 data.frames, one representing predators, one preys. The column ‘stomach_name’ links the
two, which can contain any numeric / character value, as long as it is unique for predators and
prey measurements are assigned to the correct stomach.

See mfdb_import_survey for more information or the demo directory for concrete examples.

Dumping / Restoring a DB: You can also dump/import a dump from another host using the
postgres pg_dump and pg_restore commands. You can dump/restore indvidual schemas (i.e.
the case study you give to the mfdb() command), to list all the schemas installed run SELECT
DISTINCT (table_schema) FROM information_schema. tables from psql. Note that if you use
mfdb('Baltic"), the Postgres schema name will be lower-cased.

Create a dump of your chosen schema with the following command:

4 mfdb-package

pg_dump --schema=baltic -Fc mf > baltic.dump

This will make a dump of the "baltic" case study into "baltic.tar". It can then be restored onto
another computer with the following:

pg_restore --clean -d mf baltic.dump

If you already have a baltic schema you wish to preserve, you can rename it first by issuing ALTER
SCHEMA baltic RENAME TO baltic_o in psql. Once the restore is done you can rename the new
schema and put the name of the old schema back.

Querying data

There are a selection of querying functions available, all of which work same way. You give a set of
parameters, each of which can be a vector of data you wish returned, for instance year = 1998:2000
or species=c('COD").

If also grouping by this column (i.e. ’year’, ’timestep’, ’area’ and any other columns given,
e.g. ’age’), then the parameter will control how this grouping works, e.g. maturity_stage =
mfdb_group(imm =1, mat = 2:5) will result in the maturity_stage column having either "imm’ or
’mat’. These will also be used to generate GADGET aggregation files later.

For example, the following queries the temperature table:

defaults <- list(
area = mfdb_group("101"” =),
timestep = mfdb_timestep_quarterly, # Group months to create 2 timesteps for each year
year = 1996:2005)
agg_data <- mfdb_temperature(mdb, defaults)

All functions will result in a list of data.frame result tables (generally only one, unless you requested
bootstrapping). Each are suitable for feeding into a gadget function to output into model files.

See mfdb_sample_count for more information or the demo directory for concrete examples.

Creating GADGET files

Finally, there are a set of functions that turn the output of queries into GADGET model files. These
work on a gadget_directory object, which can either be an existing GADGET model to alter, or an
empty / nonexistant directory.

Generally, the result of an mfdb query will be enough to create a corresponding GADGET file, for
instance, the following will create a GADGET area file in your gadget directory:

gadget_dir_write(gd,gadget_areafile(
size = mfdb_area_size(mdb, defaults)[[1]1],
temperature = mfdb_temperature(mdb, defaults)[[1]11))

See gadget_areafile or gadget_likelihood_component for more information or the demo directory
for concrete examples.

ewe_model 5

Stock and fleet files: Stocks and fleets aren’t explicitly defined in the database. Instead, they
are definied by querying on a column that differentiates them. For example, if your "immature
cod" stock is definied as cod that is between maturity stages 1 and 2, then if querying for a
stockdistribution component, one could do:

mfdb_sample_count(mdb, c('maturity_stage', 'age', 'length'), list(
species = 'COD',
maturity_stage = c(imm = 1:2, mat = 3:5),

)

...and the maturity_stage column will be treated as the stock.

Acknowledgements

This project has received funding from the European Union’s Seventh Framework Programme for
research, technological development and demonstration under grant agreement no.613571.

Author(s)

Jamie Lentin

Maintainer: Jamie Lentin <jamie.lentin @shuttlethread.com>

See Also

rgadget, Gadget user guide

ewe_model MareFrame DB Rpath interface

Description

Transform the results of MFDB queries for use in an Rpath model

Usage

mfdb_rpath_params(area_data,
survey_data,
catch_data,
consumption_data,
create_rpath_params = stop(”Set create_rpath_params = Rpath::create.rpath.params"”),
living_groups = character(0),
detritus_groups = c("Detritus"))

https://github.com/gadget-framework/rgadget
https://gadget-framework.github.io/gadget2/userguide/

6 gadget_areafile

Arguments
area_data Results of an mfdb_area_size query, aggregating the whole area
survey_data Results of an mfdb_sample_totalweight query, normally for one year, aggre-
gated by the model’s functional groups
catch_data Results of an mfdb_sample_totalweight query, normally for one year, aggre-

gated by the model’s functional groups and "vessel’
consumption_data
Results of an mfdb_stomach_preyweightratio query, aggregated by functional
groups
living_groups Additional Rpath groups of "Living" type
detritus_groups
Additional Rpath groups of "Detritus" type
create_rpath_params

RPath isn’t currently in a public repository, so to avoid depending on it you need
to give mfdb_rpath_params the Rpath function, i.e. Rpath: :create.rpath.params.

Details

EWwE requires stanzas and groups of stanzas, these are made up using the first and any other group-

ings in MFDB. For example, if survey_data was made with a query like mfdb_sample_totalweight(mdb,
c('species', 'age'), ...), then the species will make up the generated stanza_groups, and age

will make up the stanzas within those groups.

catch_data requires data that is also aggregated by vessel, this will be ignored for the purposes of
deciding the stanza/stanza_group.

consumption_data treats prey groupings seperate to predator groupings, and all will be added to
the diet matrix.

See mfdb_sample_totalweight for more information on how groupings can be used in queries.

Value

Returns an Rpath.params object populated with the provided data.

Examples

See demo/example-ewe.R for a full-length example

gadget_areafile Gadget area files

Description

Structures representing a GADGET area file

gadget_areafile 7

Usage

gadget_areafile(size, temperature, area = attr(size, 'area'))

Arguments
size data.frame as produced by mfdb_area_size
temperature data.frame as produced by mfdb_temperature
area Optional. mfdb_group that you used to specify area. By default pulls it from
annotations on the size object.
Details

Once formed, you can then use gadget_dir_write to write this out to a GADGET areafile.

Value

List of class gadget_areafile’ that represents the area file contents.

Examples

Open a temporary database connection
mdb <- mfdb(tempfile(fileext = '.duckdb'))

Define 2 areacells of equal size
mfdb_import_area(mdb, data.frame(name=c("divA", "divB"), size=1))

We want to have 3 area groups, 2 for original cells, one aggregating across the lot
area_group <- mfdb_group(

divA = c("divA"),

divB = c("divB"),

divAB = c("divA", "divB"))

Make up temperature data

temps <- expand.grid(year=c(1998,2000), month=c(1:12), areacell=c("divA"”, "divB"))
temps$temperature <- runif(nrow(temps), 5, 10)

mfdb_import_temperature(mdb, temps)

Create an areafile from 2 mfdb queries
areafile <- gadget_areafile(
mfdb_area_size(mdb, list(
area = area_group))[[11],
mfdb_temperature(mdb, list(
year = 1998:2000,
timestep = mfdb_timestep_quarterly,
area = area_group))[[111)
areafile

Write this to a gadget_directory
gadget_dir_write(gadget_directory(tempfile()), areafile)

Check data in file matches input data

stopifnot(identical(
areafile$size,
c(divA=1, divB=1, divAB=2)))

stopifnot(all.equal(
mean(areafile$temperaturelareafile$temperature$area == 1,
mean(temps[temps$areacell == 'divA', 'temperature'l]),
tolerance = 1e-2))

stopifnot(all.equal(
mean(areafile$temperaturelareafile$temperature$area == 2,
mean(temps[temps$areacell == 'divB', 'temperature']),
tolerance = 1e-2))

stopifnot(all.equal(
mean(areafile$temperaturelareafile$temperature$area == 3,
mean (temps[, 'temperature']),
tolerance = 1e-2))

mfdb_disconnect(mdb)

gadget_directory

'mean']),

'mean']),

'mean']),

gadget_directory Gadget directory objects

Description

Structures representing a directory of data files

Usage

gadget_directory(dir, mainfile = "main")
gadget_dir_write(gd, obj)

gadget_dir_read(gd, file_name, missing_okay = TRUE, file_type = c())

Arguments
dir Name of directory, will be created if it doesn’t exist.
mainfile Name of the GADGET mainfile to use.
gd A gadget_directory object.
obj The gadget_file, or gadget_likelihood_component to write.
file_name File to read out of the directory and turn into a gadget_file.

missing_okay If true, return an empty file instead of complaining that the given file does not

exist.

file_type A character vector that alters how the file is parsed. Currently either NULL
or "bare_component”, which implies we write "something" instead of "[some-

thing]".

gadget_file 9

Details

These functions handle reading and writing of files to a directory containing GADGET model files.

First a gadget_directory object needs to be created with gadget_directory, this ensures the direc-
tory exists and stores the name of the mainfile to use.

Any portion of a gadget model can then be written out with gadget_dir_write. You do not need
to tell it which files in the model to update, since this is worked out based on what you are writing
out.

Value

gadget_directory returns a list of class ’gadget_directory’, containing the location of the mainfile
that the gadget configuration will use.

gadget_dir_write returns NULL
gadget_dir_read returns a gadget_file object from read.gadget_file

Examples

Create a gadget directory
gd <- gadget_directory(tempfile())

Read in the likelihood file
likelihood <- gadget_dir_read(gd, 'likelihood')

Write out an area file to "(tempfile)/areas"”, replacing any existing file
gadget_dir_write(gd, gadget_file("areas"”, components = list(list(north =1:3, south =4:7))))

Replace a likelihood component if one already exists with
the same name/type or append it to the bottom
gadget_dir_write(gd, gadget_likelihood_component("understocking”, name = "frank"))

gadget_file Gadget file objects

Description

Structures representing an individual GADGET data file.

Usage

gadget_file(file_name, components = list(), data = NULL, file_type = c())
S3 method for class 'gadget_file'

print(x, ...)
S3 method for class 'gadget_file'
as.character(x, ...)

read.gadget_file(file_name, file_type = c(), fileEncoding = "UTF-8")

10 gadget_file

Arguments

file_name Filename the output should be written to / read from

components A list of lists, representing each component. See details.

data A data. frame representing the tabular data at the end of a file.

file_type A character vector that alters how the file is parsed. Currently either NULL
or "bare_component”, which implies we write "something" instead of "[some-
thing]".

X gadget_file object

fileEncoding File’s characterset. Defaults to UTF-8
Unused

Details

For our purposes, a gadget file is broken down into components, where the first component is any
key/value data at the top of the file. Each section separated by "[something]" is considered a new
component. Each component is a list of key /values, where values can be vectors of multiple values.
Also components can have comments prepended by adding a "preamble"” attribute.

In slight deviation to GADGET spec, we insist that tabular data begins with "; — data —", to avoid
any ambiguity on when it starts.

Value

gadget_file Returns a gadget_file object, a list of components.
print.gadget_file Prints the gadget file as it would be written to the filesystem.

as.character.gadget_file Returns a character string of the gadget file as it would be written to
the filesystem.

read.gadget_file Returns a gadget_file object, a list of components.

Examples

Simple key/values
gadget_file("age"”, components = list(
list(length = 5, age = 1:5)))

Multiple components
gadget_file("likelihood"”, components = list(

list(Q),

component = structure(list(type = "penalty"), preamble = list("comment")),

component = structure(list(type = "penalty”), preamble = list("", "another comment”))))
Data
gadget_file("agelen”, components = list(

list(stocknames = "cod")), data = data.frame(

area = c(102, 103),
number = c(2345, 5023)))

gadget_fleetfile 11

gadget_fleetfile Gadget fleet files

Description

Structures representing fleet file components

Usage

gadget_fleet_component(type,
name = type,
livesonareas = unique(data$area),
multiplicative = 1,
suitability = NULL,
fleetfile = 'fleet',
data = stop("data not provided”),

.
Arguments
type Required. Type of fleet component to create, e.g. ’totalfleet’
name Optional. A descriptive name for the fleet component, defaults to the type.

livesonareas Optional. Vector of area names, defaults to all unique areas in data.
multiplicative Optional. Defaults to 1

suitability Optional. Defaults to empty string

fleetfile Optional. The fleet file to put the component in. Defaults to *fleet’.

data Required. The data.frame to use for ’amountfile’. Areas are translated into
integers before adding to amountfile.

Extra parameters for the component, see details

Details

effortfleet requires the following extra parameters:
catchability A list of stock names to catchability constants
quotafleet requires the following extra parameters:

quotafunction Function name, e.g. ’simple’
biomasslevel Vector of biomass levels

quotalevel Vector of fishing levels

Value

A gadget_fleet_component object that can them be added to a fleetfile with gadget_dir_write

12 gadget_fleetfile

Examples

mdb <- mfdb(tempfile(fileext = '.duckdb'))
gd <- gadget_directory(tempfile())

Define 2 areacells of equal size
mfdb_import_area(mdb, data.frame(name=c("divA", "divB"), size=1))

Define 2 vessels
mfdb_import_vessel_taxonomy(mdb, data.frame(
name = c('1.RSH', '2.COM"),
full_name = c('Research', 'Commercial'),
stringsAsFactors = FALSE))

Make up some samples
samples <- expand.grid(
year = 1998,
month = 5,
areacell = c("divA", "divB"),
species = 'COD',
vessel = c('1.RSH', '2.COM"),
length = c(0,40,80))
samples$count <- runif(nrow(samples), 20, 90)

nyn

mfdb_import_survey(mdb, data_source = "x", samples)

Make a 'totalfleet' component
fc <- gadget_fleet_component(
"totalfleet’,
name = 'research',
data = mfdb_sample_count(mdb, c(), list(
vessel = '"1.RSH',
area = mfdb_group(x = 'divA', y = 'divB'),
year = 1998,
step = mfdb_timestep_yearly))[[11]1)

fc

Write out to a directory
gadget_dir_write(gd, fc)

gadget_fleet_component(

‘effortfleet’,

name = 'commercial',

suitability = "function constant 4;",
catchability = list(stockA=4, stockB=5),
quotafunction = 'simple',

biomasslevel = c(1000, 2000),

quotalevel = c(0.1, 0.4, 0.9),

data = mfdb_sample_count(mdb, c(), list(
vessel = '2.COM',
area = mfdb_group(x = 'divA', y = 'divB'),
year = 1998,
step = mfdb_timestep_yearly))[[1]]1)

gadget_likelihood_component 13

gadget_fleet_component(

'quotafleet’',

name = 'commercial',

suitability = "function constant 4;",
catchability = list(stockA=4, stockB=5),
quotafunction = 'simple',

biomasslevel = c(1000, 2000),

quotalevel = c(0.1, 0.4, 0.9),

data = mfdb_sample_count(mdb, c(), list(
vessel = '2.COM',
area = mfdb_group(x = 'divA', y = 'divB'),
year = 1998,
step = mfdb_timestep_yearly))[[1]]1)

mfdb_disconnect (mdb)

gadget_likelihood_component
Gadget likelihood components

Description

Structures representing a component of a GADGET likelihood file.

Usage
gadget_likelihood_component (type, weight = @, name = type,
likelihoodfile = 'likelihood', ...)
Arguments
type Type of group to create. One of penalty, understocking, catchstatistics, catchdis-
tribution, stockdistribution.
name A descriptive name for the component
weight A numeric weighting

likelihoodfile The likelihood file this component should end up in

Extra parameters for the group. See details.

Details
In addition, penalty understands:
data A data.frame with 2 columns, "switch" and "power"
catchstatistics understands:

data_function The function Gadget should use, by default guesses based on the function that gen-
erated data

14

gadget_likelihood_component

data A data.frame probably generated by mfdb_sample_meanlength_stddev
area An list of areas, taken from attr(data, "area"”) if not supplied

age An list of ages, taken from attr(data, "age") if not supplied
fleetnames List of fleet names

stocknames List of stock names
catchdistribution understands:

data_function The function Gadget should use, by default uses sumofsquares
data_function_params Extra parameters to supply to gadget, based on the function
aggregationlevel TRUE or FALSE, defaults to FALSE

overconsumption TRUE or FALSE, defaults to FALSE

epsilon Numeric, defaults to 10

data A data.frame probably generated by mfdb_sample_meanlength_stddev
area An list of areas, taken from attr(data, "area"”) if not supplied

age An list of ages, taken from attr(data, "age") if not supplied

length An list of lengths, taken from attr(data, "length”) if not supplied
fleetnames List of fleet names

stocknames List of stock names
stockdistribution understands:

data_function The function Gadget should use, by default uses sumofsquares
overconsumption TRUE or FALSE, defaults to FALSE

epsilon Numeric, defaults to 10

data A data.frame probably generated by mfdb_sample_meanlength_stddev
area An list of areas, taken from attr(data, "area”) if not supplied

age An list of ages, taken from attr(data, "age") if not supplied

length An list of lengths, taken from attr(data, "length”) if not supplied
fleetnames List of fleet names

stocknames List of stock names
surveydistribution understands:

data A data.frame probably generated by mfdb_sample_meanlength_stddev
area An list of areas, taken from attr(data, "area”) if not supplied

length An list of lengths, taken from attr(data, "length”) if not supplied
age An list of ages, taken from attr(data, "age") if not supplied
stocknames List of stock names

fittype, slope, intercept Fit options, see GADGET manual

parameters A vector of length 2

suitability A single suitability function

gadget_likelihood_component 15

epsilon Numeric, defaults to 10

likelihoodtype String, see GADGET manual
surveyindices understands:

sitype What data the component is based on, see GADGET manual

biomass 0 or 1, defaults to O

data A data.frame probably generated by mfdb_sample_meanlength_stddev
area An list of areas, taken from attr(data, "area”) if not supplied

age An list of ages, taken from attr(data, "age") if not supplied

length An list of lengths, taken from attr(data, "length") if not supplied
fleetnames List of fleet names

stocknames List of stock names

surveynames List of acoustic survey names

fittype, slope, intercept Fit options, see GADGET manual
stomachcontent understands:

data_function Function GADGET will use
epsilon To be used when calculated probability is low

prey_labels FEither a vector of stock names to be used for all preys, or a list to match preys, see
below

prey_digestion_coefficients Optional. Either a vector of coefficients fo be used for all preys, or a
list to match preys, see below

predator_names Vector of predator stock names

data A data.frame probably generated by mfdb_sample_meanlength_stddev

Both prey_labels and prey_digestion_coefficients allow you to match parts of prey labels
and use repetition. For instance, list("cod.mat" = "mature_cod”, "cod" = "cod"”, "other")

will give "cod.mat" the label "mature_cod", "cod.imm" the label "cod", and anything else will get
"other". You can also use regular expression syntax, for example "cod[0-9]".

migrationpenalty understands:

stockname Stock name

powercoeffs 2 power coefficients

Value

A gadget_likelihood_component object that can then be written to a likelihood file with gadget_dir_write

16 gadget_stockfile

Examples

Create a penalty component
component <- gadget_likelihood_component("penalty”,
name = "bounds”,
weight = "0.5",
data = data.frame(
switch = c("default”),
power = c(2),
stringsAsFactors = FALSE))
component

Create an understocking component
component <- gadget_likelihood_component("understocking”, name ="understock")
component

Any example could be added to a file with the following:-
gd <- gadget_directory(tempfile())
gadget_dir_write(gd, component)

gadget_stockfile Gadget stock files

Description

Structures representing a GADGET stock file

Usage

gadget_stockfile_extremes(stock_name, data)
gadget_stockfile_refweight(stock_name, data)
gadget_stockfile_initialconditions(stock_name, data)
gadget_stockfile_recruitment(stock_name, data)

Arguments
stock_name A name, e.g. cod. imm, used as the name for the stockfile
data A data.frame used to generate the data. See details.
Details

The columns required in the data varies depends on which function you are using.

gadget_stockfile_extremes requires age and length columns and populates minlength, minage,
maxlength, maxage. The values are obtained by the grouping used, rather than the maximum values
in the data. If you want the minimum and maximum from the data, query with length = NULL, age
= NULL, so the table contains "all" and the grouping contains the actual minimum and maximum.

gadget_stockfile_refweight requires a length column and a mean column representing mean
weight for that length group. It populates the refweightfile and d1.

mfdb 17

gadget_stockfile_initialconditions requires area, age, length, number and mean (weight)
columns. Populates initialconditions minlength, minage, maxlength, maxage, d1 and the numberfile.
As before, the min/max values are populated using the groupings you specify, not the min/max
available data.

gadget_stockfile_recruitment requires year, step, area, age, length, number and mean
(weight) columns. Populates doesrenew, minlength, maxlength, d1, numberfile.

Value

The return value is a gadget_stockfile object that can be written to the filesystem with gadget_dir_write.

Examples

mdb <- mfdb(tempfile(fileext = '.duckdb'))

Define 2 areacells of equal size
mfdb_import_area(mdb, data.frame(name=c("divA", "divB"), size=1))

Make up some samples
samples <- expand.grid(
year = 1998,
month = ¢(1:12),
areacell = c("divA"”, "divB"),
species = 'COD',
age = c(1:5),
length = c(0,40,80))
samples$count <- runif(nrow(samples), 20, 90)
mfdb_import_survey(mdb, data_source = "x", samples)

imm_data <- mfdb_sample_meanweight(mdb, c('age', 'length'), list(
age = NULL, # The age column will say 'all', but will know the min/max
length = mfdb_step_interval('', 10, to = 100),
species = 'COD'))

Write both min/max and refweighfile into our gadget directory
component <- gadget_stockfile_extremes('cod.imm', imm_datal[[1]1])

component

component <- gadget_stockfile_refweight('cod.imm', imm_datal[1]1])
component

gadget_dir_write(gadget_directory(tempfile()), component)

mfdb_disconnect (mdb)

mfdb MareFrame DB class

18 mfdb

Description

Create a class representing a connection to a MareFrame DB

Usage
mfdb (schema_name,
db_params = list(),
destroy_schema = FALSE,
save_temp_tables = FALSE)
mfdb_disconnect(mdb)
Arguments
schema_name This can be one of:
1. Postgresql schema name
2. A file path ending with ".sqlite" to connect to a SQLite file database
3. A file path ending with ". duckdb" to connect to a DuckDB file database
If connecting to a SQLite/DuckDB database, db_params should remain empty (
schema_name will be used as a dbname).
If connecting to a Postgres database, it can be used to store any number of case
studies, by storing them in separate schemas. This parameter defines the schema
to connect to, and can contain any lower case characters or underscore.
db_params Extra parameters to supply to DBI: : dbConnect. By default it will search for a

"mf" database locally, but you can override any of the parameters, in particular

host, dbname, user, password. See ?RPostgres: :Postgres for more infor-
mation.

If dbname looks like a SQLite database filename, then MFDB will use the RSQLite
driver. If dbdir is set, then MFDB will use the duckdb driver. Otherwise,
RPostgres will be used.

db_params can also be supplied by environment variable, for example if a MFDB_DBNAME
environment variable is set then it will be used instead of any dbname supplied

here.

destroy_schema Optional boolean. If true, all mfdb tables will be destroyed when connecting.
This allows you to start populating your case study from scratch if required. The
function will return NULL, you need to call mfdb again to connect, at which
point the mfdb tables will be recreated and you can populate with data again.
save_temp_tables
Optional boolean. If true, any temporary tables will be made permanent for later
inspection.

mdb Database connection created by mfdb ().

Value

A ’mfdb’ object representing the DB connection

mfdb-data 19

Examples

Connect to a SQLite database file
mdb <- mfdb(tempfile(fileext = '.sqlite'))
mfdb_disconnect (mdb)

Not run: # NB: Requires a PostgreSQL installation, see README

Connect to local DB, as the "examples” case study
mdb <- mfdb('examples')
mfdb_disconnect(mdb)

Connect to remote server, will prompt for username/password
if (interactive()) {

mdb <- mfdb('examples', db_params = list(host = "mfdb.rhi.hi.is"))
3

End(Not run)

mfdb-data MareFrame DB Datasets

Description

Data sets representing the content of taxonomies used in the database.

Usage

case_study

gear

institute
market_category
maturity_stage
sex

species
vessel_type

Details
All of these tables represent acceptible values for use when importing data. You can see the content
of an individual taxonomy at the R command line, e.g. mfdb: : gear

Each of the datasets will have the following columns.

id A numeric ID to be used internally
name An alphanumeric ID to be used when importing and reporting data.
description Some text describing the option.

t_group Groups together several items to query all in one go. e.g. for institutes you can query
"NOR’ to get all institutes in Norway.

20 mfdb_aggregate_group

The taxonomies are used in the following locations:

case_study Possible case studies, use when connecting with mfdb()
gear, institute, vessel_type Used to describe the dataset being imported with mfdb_import_survey()

sex, maturity_stage, species Used for individual sample points when using mfdb_import_survey()

mfdb_aggregate_group MareFrame DB groups

Description

Represent a grouping of data to be applied when summarising area, timestep, age or length.

Usage

Named grouping of discrete items
mfdb_group(...)

Pre-baked mfdb_groups for timesteps
mfdb_timestep_yearly
mfdb_timestep_biannually
mfdb_timestep_quarterly

Grouping of discrete items, names generated by prefix
mfdb_group_numbered(prefix, ...)

make (count) mfdb_groups, by sampling (count) times from (group)
mfdb_bootstrap_group(count, group, seed = NULL)

Arguments
For mfdb_group, all named arguments are expected to be a named list of mem-
bers for that group. For mfdb_group_numbered, the members do not have to be
named, a name will be generated based on the prefix.
prefix When generating numeric group names, the character prefix to append to the
beginning.
group For mfdb_bootstrap_group, the mfdb_group to do sampling with replacement
from.
count For mfdb_bootstrap_group, how many times to sample each member of the
given group.
seed For mfdb_bootstrap_group, if you want your groups to remain consistent across
sessions, then specify a random integer as per RNG.
Value

Anmfdb_aggregate object that can then be used in querying functions such as mfdb_sample_count

mfdb_aggregate_interval 21

Examples

Aggregate age into 2 groups. "young” (for ages 1--3) and
"old” (for ages 4--6)
gl <- mfdb_group(young = c(1,2,3), old = c(4,5,6))

Aggregate areas into "areal” and "area2”.
g2 <- mfdb_group_numbered("area”, c(1011,1012,1013), c(1021,1022))

Take 3 samples with replacement from each group in area
g3 <- mfdb_bootstrap_group(3, g2)

mfdb_aggregate_interval
MareFrame DB intervals

Description

Represent a uniform or non-uniform interval.

Usage
mfdb_interval (prefix, vect, open_ended = FALSE)

Arguments
prefix (required) A character prefix to prepend to minimum to create list names
vect (required) A vector representing the minimum for each group, and the maximum
open_ended If TRUE / c(’upper’), the last group will ignore it’s upper bound and include
any value. If c(lower’), the first group will ignore it’s lower bound include
everything < the first value in vect. If c("upper’, "lower’), both the above occur.
This is useful when creating plus groups for GADGET, as GADGET will still
be presented a bounded group, but will contain all remaining data.
Value

Anmfdb_aggregate object that can then be used in querying functions such as mfdb_sample_count

Examples
Make groups of len4@ (40--60), len6@ (60--80)
gl <- mfdb_interval("len”, c(40, 60, 80))

Use seq to make life easier
g2 <- mfdb_interval("len"”, seq(40, 80, by = 20))

Create groups len40: [40, 60), len60@: [60, inf) (but [60, 80) in the GADGET model)
gl <- mfdb_interval(”len”, c(40, 60, 80), open_ended = c("upper”))

22 mfdb_aggregate_step_interval

mfdb_aggregate_na_group
MareFrame DB aggregate NAs

Description

A decorator for other MFDB attributes to file NAs into another group, either one created by the
main function or not.

Usage

mfdb_na_group(sub_aggregate, na_group)

Arguments

sub_aggregate An mfdb_aggregate produced by another function, e.g. mfdb_step_interval

na_group The group to assign NAs to, e.g. "len_unknown"

Details
The NA group won’t be added to any aggregate files generated by MFDB, since the output would
be invalid.

Value

Anmfdb_aggregate object that can then be used in querying functions such as mfdb_sample_count

Examples

length <- mfdb_na_group(mfdb_step_interval(”len”, 10), 'len_unknown')

mfdb_aggregate_step_interval
MareFrame DB intervals

Description

Groups data into uniform intervals

Usage

mfdb_step_interval (prefix, by, from = @, to = NULL, open_ended = FALSE)

mfdb_aggregate_unaggregated 23

Arguments

prefix
by
from, to

open_ended

Value

(required) A character prefix to prepend to minimum to create list names
(required) Increment of the sequence. NB: Must be an integer
Start / end of the sequence. Defaults to 0 / infinity respectively.

If TRUE / c(upper’), the last group will ignore it’s upper bound and include
any value. If c(’lower’), the first group will ignore it’s lower bound include
everything < the first value in vect. If c('upper’, *lower’), both the above occur.
This is useful when creating plus groups for GADGET, as GADGET will still
be presented a bounded group, but will contain all remaining data.

Anmfdb_aggregate object that can then be used in querying functions such as mfdb_sample_count

Examples

Make groups of len@ (0--5), len5 (5--10), ... len45(45--50)
gl <- mfdb_step_interval("len”, 5, to = 50)

Make groups of len@ (0--5), len5 (5--10), ... len45(45--50), len50(50--inf)
g2 <- mfdb_step_interval("len”, 5, to = 50, open_ended = TRUE)

mfdb_aggregate_unaggregated

MareFrame DB unaggregated data

Description

Tell mfdb functions not to aggregate this column, just return all values.

Usage

mfdb_unaggregated(omitNA = FALSE, like = c(), not_like = c())

Arguments

omitNA
like
not_like

Details

SQL like expessions can use the wildcards

Value

Skip over rows where column is NA
Vector of SQL like expressions to check column against

Vector of SQL like expressions to check column against

non

to match any character and "

Anmfdb_aggregate object that can then be used in querying functions such as mfdb_sample_count

24 mfdb_bulk

Examples

All vessels with a name ending with 'e' or 'd'
mfdb_unaggregated(like = c("%e", "%d"))

mfdb_bulk MareFrame DB Dump / Restore

Description

Dump / Restore entire case studies.

Usage

mfdb_cs_dump(mdb, out_location)
mfdb_cs_restore(mdb, in_location)

Arguments

mdb (required) A database connection created by mfdb()
in_location, out_location

(required) A filesystem directory or ’.tar.gz’ file to dump / restore database con-
tents.

Details

Deprecated: These commands aren’t strictly necessary any more. In most situations it will be easier
to use Postgres’ pg_dump and pg_restore. See mfdb-package for some examples of how to do it.
These functions don’t offer much more functionality and much slower.

mfdb_cs_dump copies all data from the database/case-study that mdb is connected to, and writes it
out to files in out_location. If this ends with ’tar.gz’, then all files will be put into a tarball with
the name

mfdb_cs_restore will remove any case-study data, and replaces it with the content of in_location,
a directory or tarball.

Value

NULL

Examples

Copy data from one database to another, note they don't have to be the same type
mdb_out <- mfdb(tempfile(fileext = '.sqlite'))
mdb_in <- mfdb(tempfile(fileext = '.duckdb'))

dump_path <- tempfile(fileext='.tar.gz')
mfdb_cs_dump(mdb_out, dump_path)
mfdb_cs_restore(mdb_in, dump_path)

mfdb_dplyr

25

mfdb_disconnect(mdb_in)
mfdb_disconnect(mdb_out)

mfdb_dplyr

MareFrame DB dplyr interface

Description

Use mfdb tables with dplyr

Usage
mfdb_dplyr_table(mdb, table_name, include_cols = all_cols)
mfdb_dplyr_survey_index(mdb, include_cols = all_cols)
mfdb_dplyr_division(mdb, include_cols = all_cols)
mfdb_dplyr_sample(mdb, include_cols = all_cols)
mfdb_dplyr_predator(mdb, include_cols = all_cols)
mfdb_dplyr_prey(mdb, include_cols = all_cols)

Arguments
mdb An object created by mfdb()

table_name A table name to query in

include_cols Any additonal columns to include in output, see details.

Details

Warning: Whilst these might be handy for exploration, there is no guarantee that code using these
will continue to work from one version of MFDB to the next.

There is one function for each measurement table. By default every possible taxonomy column is
included. However this is somewhat inefficient if you do not require the data, in which case specify
the columns requred with include_cols. See mfdb: :mfdb_taxonomy_tables for possible values.

To query taxonomy tables, use mfdb_dplyr_table, which works for any supplied table name. See
mfdb: :mfdb_taxonomy_tables for possible values for table_name.

Value

A dplyr table object, for you to do as you please.

26 mtdb_helpers
Examples
mdb <- mfdb(tempfile(fileext = '.duckdb'))

Include as many columns as possible
mfdb_dplyr_sample(mdb)

Only include 'data_source' and 'species' columns, as well as measurements
mfdb_dplyr_sample(mdb, c('data_source', 'species'))

Query the sampling_type table
mfdb_dplyr_table(mdb, 'sampling_type')

mfdb_disconnect (mdb)

mfdb_helpers MareFrame tools & helpers

Description

Misc. functions to aid working with an MFDB database.

Usage
Find species from abbreviated names
mfdb_find_species(partial_name, single_matches_only = FALSE)
Arguments

partial_name Vector of partial species names, e.g. "Gad Mor", "gad. Mor.", "Gadus Mor",
will all match "Cod (Gadus Morhua)".

single_matches_only

Logical, default FALSE. If true, return NA for partial_names with multiple or
zero matches.

Value

A matrix of all potential id, name & descriptions for each item in partial_name.

Examples
mfdb_find_species(c("gad mor"”, "tube worms"))
gad mor tube worms
id 8791030402 le+10
name "COoD" "TBX"

description "Cod (Gadus Morhua)" "Tube Worms (Tubeworms)”

Can also generate a map to help insert a data.frame of foreign data
stomachs <- read.csv(text = '
stomach_name, species,digestion_stage, length,weight, count

mfdb_helpers_mfdb_concatenate_results 27

A,Palaemon Elegans,1,1,10,5
A,Palaemon Elegans,1,4,40,1
B,Palaemon Elegans,1,1,10,5
B,Palaemon Elegans,4,1,10,5
B,Palaemon Elegans,5,1,10,NA
B,Palaemon Elegans,5,1,10,NA
C,Crangon Crangon,2,3.5,9.5,3
D,Palaemon Elegans,1,1.4,10,1
D,Crangon Crangon,5,4,40,1
E,Worms,1,1.4,10,1

', stringsAsFactors = TRUE)

Work out a map from all Prey_Species_Name values to MFDB species codes
species_map <- mfdb_find_species(levels(stomachs$species), single_matches_only = TRUE)['name’,]

Put the new levels back onto the species column
levels(stomachs$species) <- unlist(species_map)

stomachs

mfdb_helpers_mfdb_concatenate_results
MareFrame Query Utilities

Description

Aggregate data from the database in a variety of ways

Usage

mfdb_concatenate_results(...)

Arguments

Any number of data.frames produced by mfdb query functions with identical
columns, e.g. mfdb_sample_count

Value

Given any number of data.frames from mfdb query functions with identical columns, produces a
combined data.frame, similar to rbind but preserving the attributes required to produce aggregation
files.

28 mfdb_import_data

mfdb_import_data MareFrame Data Import functions

Description

Functions to import data into MareFrame DB

Usage
mfdb_import_temperature(mdb, data_in)
mfdb_import_survey(mdb, data_in, data_source = 'default_sample')
mfdb_import_survey_index(mdb, data_in, data_source = 'default_index')

mfdb_import_stomach(mdb, predator_data, prey_data, data_source = "default_stomach")

Arguments

mdb Database connection created by mfdb ().
data_in, predator_data, prey_data
A data. frame of survey data to import, see details.

data_source A name for this data, e.g. the filename it came from. Used so you can replace it
later without disturbing other data.

Details
All functions will replace existing data in the case study with new data, unless you specify a
data_source, in which case then only existing data with the same data_source will be replaced.
If you want to remove the data, import empty data.frames with the same data_source.

mfdb_import_temperature imports temperature time-series data for areacells. The data_in should
be a data.frame with the following columns:

id A numeric ID for this areacell (will be combined with the case study number internally)
year Required. Year each sample was taken, e.g. c(2000,2001)

month Required. Month (1-12) each sample was taken, e.g. c(1,12)

areacell Required. Areacell sample was taken within

temperature The temperature at given location/time

mfdb_import_survey imports institution surveys and commercial sampling for your case study.
The data_in should be a data.frame with the following columns:

institute Optional. An institute name, see mfdb::institute for possible values

gear Optional. Gear name, see mfdb::gear for possible values

vessel Optional. Vessel defined previously with mfdb_import_vessel_taxonomy(...)
tow Optional. Tow defined previously with mfdb_import_tow_taxonomy(...)

sampling_type Optional. A sampling_type, see mfdb::sampling_type for possible values

mfdb_import_data 29

year Required. Year each sample was taken, e.g. c(2000,2001)

month Required. Month (1-12) each sample was taken, e.g. c(1,12)

areacell Required. Areacell sample was taken within

species Optional, default c(NA). Species of sample, see mfdb::species for possible values
age Optional, default c(NA). Age of sample, or mean age

sex Optional, default c(NA). Sex of sample, see mfdb::sex for possible values

length Optional, default c(NA). Length of sample / mean length of all samples
length_var Optional, default c(NA). Sample variance, if data is already aggregated
length_min Optional, default c(NA). Minimum theoretical length, if data is already aggregated
weight Optional, default c(NA). Weight of sample / mean weight of all samples
weight_var Optional, default c(NA). Sample variance, if data is already aggregated

weight_total Optional, default c(NA). Total weight of all samples, can be used with count = NA to
represent an unknown number of samples

liver_weight Optional, default c (NA). Weight of sample / mean liver weight of all samples
liver_weight_var Optional, default c(NA). Sample variance, if data is already aggregated
gonad_weight Optional, default c(NA). Weight of sample / mean gonad weight of all samples
gonad_weight_var Optional, default c(NA). Sample variance, if data is already aggregated
stomach_weight Optional, default c(NA). Weight of sample / mean stomach weight of all samples
stomach_weight_var Optional, default c(NA). Sample variance, if data is already aggregated

count Optional, default c(1). Number of samples this row represents (i.e. if the data is aggregated)

mfdb_import_survey_index adds indicies that can be used as abundance information, for exam-
ple. Before using mfdb_import_survey_index, make sure that the index_type you intend to use
exists by using mfdb_import_cs_taxonomy. The data_in should be a data.frame with the following
columns:

index_type Required. the name of the index data you are storing, e.g. *acoustic’
year Required. Year each sample was taken, e.g. c(2000,2001)

month Required. Month (1-12) each sample was taken, e.g. c(1,12)

areacell Required. Areacell sample was taken within

value Value of the index at this point in space/time

mfdb_import_stomach imports data on predators and prey. The predator and prey data are stored
separately, however they should be linked by the stomach_name column. If a prey has a stomach
name that doesn’t match a predator, then an error will be returned.

The predator_data should be a data.frame with the following columns:

stomach_name Required. An arbitary name that provides a link between the predator and prey
tables

institute Optional. An institute name, see mfdb::institute for possible values

gear Optional. Gear name, see mfdb::gear for possible values

30

mfdb_import_data

vessel Optional. Vessel defined previously with mfdb_import_vessel_taxonomy(mdb, ...)
tow Optional. Tow defined previously with mfdb_import_tow_taxonomy(...)
sampling_type Optional. A sampling_type, see mfdb::sampling_type for possible values
year Required. Year each sample was taken, e.g. c(2000,2001)

month Required. Month (1-12) each sample was taken, e.g. c(1,12)

areacell Required. Areacell sample was taken within

species Optional, default c(NA). Species of sample, see mfdb::species for possible values
age Optional, default c(NA). Age of sample, or mean age

sex Optional, default c(NA). Sex of sample, see mfdb::sex for possible values

maturity_stage Optional, default c(NA). Maturity stage of sample, see mfdb::maturity_stage for
possible values

stomach_state Optional, default c(NA). Stomach state of sample, see mfdb::stomach_state for
possible values

length Optional, default c(NA). Length of sample
weight Optional, default c(NA). Weight of sample

The prey_data should be a data.frame with the following columns:

stomach_name Required. The stomach name of the predator this was found in
species Optional, default c(NA). Species of sample, see mfdb::species for possible values

digestion_stage Optional, default c(NA). Stage of digestion of the sample, see mfdb::digestion_stage
for possible values

length Optional, default c(NA). Length of sample / mean length of all samples
weight Optional, default c(NA). Weight of sample / mean weight of all samples
weight_total Optional, default c(NA). Total weight of all samples

count Optional, default c(NA). Number of samples this row represents (i.e. if the data is aggre-
gated), count = NA represents an unknown number of samples

Value

NULL

Examples

mdb <- mfdb(tempfile(fileext = '.duckdb'))

We need to set-up vocabularies first
mfdb_import_area(mdb, data.frame(

id = ¢(1,2,3),

name = c('35F1', '35F2', '35F3'),

size = c(5)))
mfdb_import_vessel_taxonomy(mdb, data.frame(

name = c('1.RSH', '2.COM"),

stringsAsFactors = FALSE))
mfdb_import_sampling_type(mdb, data.frame(

mfdb_import_taxonomy 31

name = c("RES", "LND"),
description = c("Research”, "Landings"),
stringsAsFactors = FALSE))
data_in <- read.csv(text = '
year,month,areacell, species, age, sex, length
1998,1,35F1,C0D,3,M, 140
1998,1,35F1,COD, 3,M, 150
1998,1,35F1,C0D, 3,F,150
9

data_in$institute <- 'MRI'

data_in$gear <- 'GIL'

data_in$vessel <- '1.RSH'

data_in$sampling_type <- 'RES'

mfdb_import_survey(mdb, data_in, data_source = 'cod-1998"')

mfdb_disconnect(mdb)

mfdb_import_taxonomy MareFrame Taxonomy import functions

Description

Functions to import taxonomy data into MareFrame DB

Usage

mfdb_import_area(mdb, data_in)
mfdb_import_division(mdb, data_in)
mfdb_import_sampling_type(mdb, data_in)
mfdb_import_bait_type_taxonomy(mdb, data_in)
mfdb_import_population_taxonomy(mdb, data_in)
mfdb_import_port_taxonomy(mdb, data_in)
mfdb_import_tow_taxonomy(mdb, data_in)
mfdb_import_net_type_taxonomy(mdb, data_in)
mfdb_import_trip_taxonomy(mdb, data_in)
mfdb_import_vessel_taxonomy(mdb, data_in)
mfdb_import_vessel_owner_taxonomy(mdb, data_in)

mfdb_empty_taxonomy(mdb, taxonomy_name)
mfdb_import_cs_taxonomy(mdb, taxonomy_name, data_in)

Arguments

mdb Database connection created by mfdb ().

taxonomy_name The name of the taxonomy to import, if there isn’t a special function for it. See
mfdb: : :mfdb_taxonomy_tables for possible values.

data_in A data. frame of data to import, see details.

32 mfdb_import_taxonomy

Details

MFDB taxonomies define the values you can use when importing / querying for data. They need to
be populated with the values you need before data is imported. Most taxonomies are pre-populated
by the MFDB package, so you should use the predefined values. Others however this does not make
sense, so should be done separately. This is what these functions do.

mfdb_import_division is a special case, which imports groupings of areacells into divisions, if
you haven’t already done this with mfdb_import_area or your divisions are too complicated to
represent this way. The data_in should be a list of areacell vectors, with division names. For
example, list(divA =c('45G01"', '45G02', '45G03'))

Beyond this, all functions accept the following columns:

id Optional. A numeric ID to use internally, defaults to 1..n
name Required. A vector of short names to use in data, e.g. "SEA"

t_group Optional. A vector of the that groups together a set of values

Note that the database doesn’t use your short names internally. This means you can rename items
by changing what name is set to. t_group allows taxonomy values to be grouped together. For
example, giving all vessels in a fleet the same t_group you can then query the entire fleet as well as
individually.

mfdb_import_area imports areacell information for your case study. Beyond the above, you can
also provide the following:

size The size of the areacell

depth The depth of the areacell

division The name of the division this areacell is part of

mfdb_import_vessel_taxonomy imports names of vessels into the taxonomy table, so they can be
used when importing samples. As well as the above, you can also specify:

full_name Optional. The full name of this vessel

length Optional. The length of the vessel in meters

power Optional. The vessel’s engine power in KW

tonnage Optional. The vessel’s gross tonnage

vessel_owner Optional. The short name of the vessel owner (see mfdb_import_vessel_owner_taxonomy)

mfdb_import_vessel_owner_taxonomy imports names of vessels owners into a taxonomy table,
to be used when importing vessels. As well as name/t_group, you can also specify:

full_name Optional. The full name of the owning organisation

mfdb_import_tow_taxonomy imports names of vessels into the taxonomy table, so they can be
used when importing samples. As well as the above, you can also specify:

latitude Optional.

longitude Optional.

depth Optional. Depth in meters

mfdb_import_taxonomy 33
length Optional. Length in meters

mfdb_import_port_taxonomy imports names of ports that trips can start/finish at. As well as
id/name, you can provide:

latitude Optional. Latitutde as real number
longitude Optional. Latitutde as real number

institute Optional. Institute (from institute taxonomy, could be country) responsible for port

mfdb_import_trip_taxonomy imports names of trips that samples can be labelled part of. As well
as id/name, you can provide:

latitude Optional. Latitutde as real number

longitude Optional. Latitutde as real number

start_date Optional. Start date-time, as YYYY-MM-DD or YYYY-MM-DD HH:MM: SS
end_date Optional. End date-time, as YYYY-MM-DD or YYYY-MM-DD HH:MM: SS
crew Optional. Number of crew on-board

oil_consumption Optional. Total oil consumption for trip

start_port Optional. Name of port (from port taxonomy) trip started

end_port Optional. Name of port (from port taxonomy) trip finished

mfdb_import_sampling_type imports sampling types so that you can then use these against records
in the sample table. You can also provide:

description Optional. A vector of descriptive names, e.g. "sea sampling"

mfdb_empty_taxonomy allows you to empty out a taxonomy of previous data. The import functions
insert or update values that already exist, based on the numeric ID for these values. They do not
delete anything, as it may be impossible to remove rows without destroying existing data.

However, if e.g. you want to replace the species taxonomy with an entirely different one you will
need to flush it first, before you import any data. Use this function, then mfdb_import_species_taxonomy
to import the new taxonomy.

NB: This won’t be possible if there is some data already using any of the terms. It is best used
before your database is populated.

Value

NULL

mftdb_queries

mfdb_queries MareFrame DB queries

Description

Aggregate data from the database in a variety of ways

Usage

mfdb_area_size(mdb, params)
mfdb_area_size_depth(mdb, params)
mfdb_temperature(mdb, params)
mfdb_survey_index_mean(mdb, cols, params, scale_index = NULL)
mfdb_survey_index_total(mdb, cols, params, scale_index = NULL)
mfdb_sample_count(mdb, cols, params, scale_index = NULL)
mfdb_sample_meanlength(mdb, cols, params, scale_index = NULL)
mfdb_sample_meanlength_stddev(mdb, cols, params, scale_index = NULL)
mfdb_sample_totalweight(mdb, cols, params, measurements = c('overall'))
mfdb_sample_meanweight(mdb, cols, params, scale_index = NULL,
measurements = c('overall'))
mfdb_sample_meanweight_stddev(mdb, cols, params, scale_index = NULL,
measurements = c('overall'))
mfdb_sample_rawdata(mdb, cols, params, scale_index = NULL)
mfdb_sample_scaled(mdb, cols, params, abundance_scale = NULL, scale = 'tow_length')
mfdb_stomach_preycount(mdb, cols, params)
mfdb_stomach_preymeanlength(mdb, cols, params)
mfdb_stomach_preymeanweight(mdb, cols, params)
mfdb_stomach_preyweightratio(mdb, cols, params)
mfdb_stomach_presenceratio(mdb, cols, params)

Arguments
mdb An object created by mfdb()
cols Any additonal columns to group by, see details.
params A list of parameters, see details.
scale_index Optional. survey_index used to scale results before aggregation, either "tow_length",

"area_size" or from mfdb_import_survey_index

abundance_scale
Optional. Same as scale_index

scale Optional. A scale to apply to the resulting values, e.g. "tow_length’

measurements Optional, default overall’. A vector of measurement names to use, one of over-
all, liver, gonad, stomach

mfdb_queries 35

Details
The items in the params list either restrict data that is returned, or groups data if they are also in the
cols vector, or are ’year’, "timestep’, or 'area’.
If you are grouping by the column, params should contain one of the following:
NULL Don’t do any grouping, instead put ’all’ in the resulting column. For example, age = NULL
results in "all".

character / numeric vector Aggregate all samples together where they match. For example, year
=1990: 2000 results in 1990, ... , 2000.

mfdb_unaggregated() Don’t do any aggregation for this column, return all possible values.

mfdb_group() Group several discrete items together. For example, age = mfdb_group(young =
1:3, old = 4:5) results in "young" and "old".

mfdb_interval() Group irregular ranges together. For example, length =mfdb_interval('len’,
c(0, 10, 100, 1000)) results in "len0", "len10", "len100" (1000 is the upper bound to len100).

mfdb_step_interval() Group regular ranges together. For example, length = mfdb_step_interval('len’,
to =100, by = 10) results in "len0", "len10", ... , "len90".

In addition, params can contain other arguments to purely restrict the data that is returned.

institute A vector of institute names / countries, see mfdb::institute for possible values

gear A vector of gear names, see mfdb::gear for possible values

vessel A vector of vessel names, see mfdb::vessel for possible values

sampling_type A vector of sampling_type names, see mfdb::sampling_type for possible values
species A vector of species names, see mfdb::species for possible values

sex A vector of sex names, see mfdb::sex for possible values

To save specifying the same items repeatedly, you can use list concatenation to keep some defaults,
for example:

defaults <- list(year = 1998:2000)
mfdb_sample_meanlength(mdb, c('age'), c(list(), defaults))

scale_index allows you to scale samples before aggregation. If it contains the name of a survey
index (see mfdb_import_survey_index), then any counts will be scaled by the value for that areacell
before and used in aggregation / weighted averages. As a special case, you can use "tow_length" to
to scale counts by the tow length.

Value

All will return a list of data.frame objects. If there was no bootstrapping requested, there will be
only one. Otherwise, there will be one for each sample.

The columns of these data frames depends on the function called.

mfdb_area_size Returns area, (total area) size

mfdb_area_size_depth Returns area, (total area) size, mean depth, weighted by area size

36 mftdb_queries

mfdb_temperature Returns year, step, area, (mean) temperature
mfdb_survey_index_mean Returns year, step, area, (group cols), (mean) survey index
mfdb_survey_index_total Returns year, step, area, (group cols), (sum) survey index
mfdb_sample_count Returns year, step, area, (group cols), number (i.e sum of count)
mfdb_sample_meanlength Return year, step, area, (group cols), number (i.e sum of count), mean
(length)
mfdb_sample_meanlength_stddev As mfdb_sample_meanlength, but also returns std. deviation.
mfdb_sample_totalweight Returns year,step,area,(group cols),total (weight of group)
mfdb_sample_meanweight Returns year, step, area, (group cols), number (i.e sum of count),
mean (weight)
mfdb_sample_meanweight_stddev As mfdb_sample_meanweight, but also returns std. devia-
tion.
mfdb_sample_rawdata Returns year,step,area,(group cols),number of samples, raw_weight and
raw_length.
NB: No grouping of results is performed, instead all matching table entries are returned

mfdb_sample_scaled Returns year, step, area, (group cols), number (i.e. sum of count, scaled by
tow_length), mean_weight (scaled by tow_length)

mfdb_stomach_preycount Returns year, step, area, (group cols), number (of prey found in stom-
ach)

mfdb_stomach_preymeanlength Returns year, step, area, (group cols), number (of prey found
in stomach), mean_length (of prey found in stomach). NB: Entries where count is NA (i.e.
totals) are ignored with this function.

mfdb_stomach_preymeanweight Returns year, step, area, (group cols), number (of unique stom-
achs in group), mean_weight (per unique stomach).

mfdb_stomach_preyweightratio Returns year, step, area, (group cols), ratio (of selected prey in
stomach to all prey by weight)

mfdb_stomach_presenceratio Returns year, step, area, (group cols), ratio (of selected prey in
stomach to all prey by count)

Examples

mdb <- mfdb(tempfile(fileext = '.duckdb'))

Define 2 areacells of equal size
mfdb_import_area(mdb, data.frame(name=c("divA", "divB"), size=1))

Make up some samples
samples <- expand.grid(
year = 1998,
month = ¢c(1:12),
areacell = c("divA", "divB"),
species = 'COD',
age = c(1:5),
length = c(0,40,80))
samples$count <- runif(nrow(samples), 20, 90)

mfdb_sharing 37

nyn

mfdb_import_survey(mdb, data_source = "x", samples)

Query numbers by age and length

agg_data <- mfdb_sample_count(mdb, c('age', 'length'), list(
length = mfdb_interval(”len"”, seq(@, 500, by = 30)),
age = mfdb_group('young' = c(1,2), old = 3),
year = ¢(1998)))

agg_data

Use in a catchdistribution likelihood component
gadget_dir_write(gadget_directory(tempfile()), gadget_likelihood_component("”catchdistribution”
name = "cdist”,
weight = 0.9,
data = agg_datal[11],
area = attr(agg_data[[1]], "area"),
age = attr(agg_datal[[1]], "age")))

mfdb_disconnect (mdb)

mfdb_sharing MareFrame DB sharing options

Description

Alter database privileges

Usage

mfdb_share_with(mdb, user_or_role, query = TRUE, import = FALSE)

Arguments

mdb (required) A database connection created by mfdb()

user_or_role (required) Another database user, or a role, or ’public’ to share with all users

query Should the user be able to query the current case study?
import Should the user be able to import more data current case study?
Details

This allows you to share case study data between users. This is most useful when using a shared
database. Only the owner of the schema (i.e. the user that created it) will be able to change table
structure (i.e. upgrade MFDB versions).

By default nothing is shared between users.

Value

NULL

’

38 mfdb_sharing

Examples

Not run: # NB: Requires a PostgreSQL installation, and creation of extra users
mdb <- mfdb('examples')
mfdb_share_with(mdb, 'gelda') # Allow DB user gelda to query the 'examples' case study data

End(Not run)

Index

as.character.gadget_file (gadget_file),
9

case_study (mfdb-data), 19
digestion_stage (mfdb-data), 19
ewe_model, 5

gadget_areafile, 4,6
gadget_dir_read (gadget_directory), 8
gadget_dir_write (gadget_directory), 8
gadget_directory, 4, 8
gadget_file, 9
gadget_fleet_component
(gadget_fleetfile), 11
gadget_fleetfile, 11
gadget_likelihood_component, 4, 13
gadget_stockfile, 16
gadget_stockfile_extremes
(gadget_stockfile), 16
gadget_stockfile_initialconditions
(gadget_stockfile), 16
gadget_stockfile_recruitment
(gadget_stockfile), 16
gadget_stockfile_refweight
(gadget_stockfile), 16
gear (mfdb-data), 19

institute (mfdb-data), 19

market_category (mfdb-data), 19
maturity_stage (mfdb-data), 19
mfdb, 3, 17, 20

mfdb-data, 2, 19
mfdb-package, 2, 24
mfdb_aggregate_group, 20
mfdb_aggregate_interval, 21
mfdb_aggregate_na_group, 22
mfdb_aggregate_step_interval, 22
mfdb_aggregate_unaggregated, 23

39

mfdb_area_size (mfdb_queries), 34
mfdb_area_size_depth (mfdb_queries), 34
mfdb_bootstrap_group
(mfdb_aggregate_group), 20
mfdb_bulk, 24
mfdb_concatenate_results

(mfdb_helpers_mfdb_concatenate_results),

27
mfdb_cs_dump (mfdb_bulk), 24
mfdb_cs_restore (mfdb_bulk), 24
mfdb_disconnect (mfdb), 17
mfdb_dplyr, 25
mfdb_dplyr_division (mfdb_dplyr), 25
mfdb_dplyr_predator (mfdb_dplyr), 25
mfdb_dplyr_prey (mfdb_dplyr), 25
mfdb_dplyr_sample (mfdb_dplyr), 25
mfdb_dplyr_survey_index (mfdb_dplyr), 25
mfdb_dplyr_table (mfdb_dplyr), 25
mfdb_empty_taxonomy
(mfdb_import_taxonomy), 31
mfdb_find_species (mfdb_helpers), 26
mfdb_group (mfdb_aggregate_group), 20
mfdb_group_numbered
(mfdb_aggregate_group), 20
mfdb_helpers, 26
mfdb_helpers_mfdb_concatenate_results,
27
mfdb_import_area, 3
mfdb_import_area
(mfdb_import_taxonomy), 31
mfdb_import_bait_type_taxonomy
(mfdb_import_taxonomy), 31
mfdb_import_cs_taxonomy, 29
mfdb_import_cs_taxonomy
(mfdb_import_taxonomy), 31
mfdb_import_data, 28
mfdb_import_division, 3
mfdb_import_division
(mfdb_import_taxonomy), 31

40

mfdb_import_gear_taxonomy
(mfdb_import_taxonomy), 31
mfdb_import_net_type_taxonomy
(mfdb_import_taxonomy), 31
mfdb_import_population_taxonomy
(mfdb_import_taxonomy), 31
mfdb_import_port_taxonomy
(mfdb_import_taxonomy), 31
mfdb_import_sampling_type, 3
mfdb_import_sampling_type
(mfdb_import_taxonomy), 31
mfdb_import_species_taxonomy
(mfdb_import_taxonomy), 31
mfdb_import_stomach (mfdb_import_data),
28
mfdb_import_survey, 3, 20
mfdb_import_survey (mfdb_import_data),
28
mfdb_import_survey_index, 34, 35
mfdb_import_survey_index
(mfdb_import_data), 28
mfdb_import_taxonomy, 31
mfdb_import_temperature, 3
mfdb_import_temperature
(mfdb_import_data), 28
mfdb_import_tow_taxonomy
(mfdb_import_taxonomy), 31
mfdb_import_trip_taxonomy
(mfdb_import_taxonomy), 31
mfdb_import_vessel_owner_taxonomy
(mfdb_import_taxonomy), 31
mfdb_import_vessel_taxonomy
(mfdb_import_taxonomy), 31
mfdb_interval
(mfdb_aggregate_interval), 21
mfdb_na_group
(mfdb_aggregate_na_group), 22
mfdb_queries, 34
mfdb_rpath_params (ewe_model), 5
mfdb_sample_count, 4
mfdb_sample_count (mfdb_queries), 34
mfdb_sample_meanlength (mfdb_queries),
34
mfdb_sample_meanlength_stddev
(mfdb_queries), 34
mfdb_sample_meanweight (mfdb_queries),
34
mfdb_sample_meanweight_stddev

INDEX

(mfdb_queries), 34
mfdb_sample_rawdata (mfdb_queries), 34
mfdb_sample_scaled (mfdb_queries), 34
mfdb_sample_totalweight, 6
mfdb_sample_totalweight (mfdb_queries),

34
mfdb_share_with (mfdb_sharing), 37
mfdb_sharing, 37
mfdb_step_interval

(mfdb_aggregate_step_interval),

22
mfdb_stomach_presenceratio

(mfdb_queries), 34
mfdb_stomach_preycount (mfdb_queries),

34
mfdb_stomach_preymeanlength

(mfdb_queries), 34
mfdb_stomach_preymeanweight

(mfdb_queries), 34
mfdb_stomach_preyweightratio

(mfdb_queries), 34
mfdb_survey_index_mean (mfdb_queries),

34
mfdb_survey_index_total (mfdb_queries),

34
mfdb_temperature (mfdb_queries), 34
mfdb_timestep_biannually

(mfdb_aggregate_group), 20
mfdb_timestep_quarterly

(mfdb_aggregate_group), 20
mfdb_timestep_yearly

(mfdb_aggregate_group), 20
mfdb_unaggregated

(mfdb_aggregate_unaggregated),

23

print.gadget_file (gadget_file), 9
read.gadget_file (gadget_file), 9

sex (mfdb-data), 19
species (mfdb-data), 19
stomach_state (mfdb-data), 19

vessel_type (mfdb-data), 19

	mfdb-package
	ewe_model
	gadget_areafile
	gadget_directory
	gadget_file
	gadget_fleetfile
	gadget_likelihood_component
	gadget_stockfile
	mfdb
	mfdb-data
	mfdb_aggregate_group
	mfdb_aggregate_interval
	mfdb_aggregate_na_group
	mfdb_aggregate_step_interval
	mfdb_aggregate_unaggregated
	mfdb_bulk
	mfdb_dplyr
	mfdb_helpers
	mfdb_helpers_mfdb_concatenate_results
	mfdb_import_data
	mfdb_import_taxonomy
	mfdb_queries
	mfdb_sharing
	Index

