Package ‘future’

January 16, 2026

Version 1.69.0
Title Unified Parallel and Distributed Processing in R for Everyone
Depends R (>=3.2.0)

Imports digest, globals (>= 0.18.0), listenv (>= 0.8.0), parallel,
parallelly (>= 1.44.0), utils

Suggests methods, RhpcBLASctl, R.rsp, markdown
VignetteBuilder R.rsp

Description The purpose of this package is to provide a lightweight and
unified Future API for sequential and parallel processing of R
expression via futures. The simplest way to evaluate an expression
in parallel is to use “x %<-% { expression } with " plan(multisession)".
This package implements sequential, multicore, multisession, and
cluster futures. With these, R expressions can be evaluated on the
local machine, in parallel a set of local machines, or distributed
on a mix of local and remote machines.

Extensions to this package implement additional backends for
processing futures via compute cluster schedulers, etc.

Because of its unified API, there is no need to modify any code in order
switch from sequential on the local machine to, say, distributed
processing on a remote compute cluster.

Another strength of this package is that global variables and functions
are automatically identified and exported as needed, making it
straightforward to tweak existing code to make use of futures.

License LGPL (>=2.1)
LazyLoad TRUE
ByteCompile TRUE

URL https://future.futureverse.org,
https://github.com/futureverse/future

BugReports https://github.com/futureverse/future/issues
Language en-US
Encoding UTF-8

https://future.futureverse.org
https://github.com/futureverse/future
https://github.com/futureverse/future/issues

RoxygenNote 7.3.3

Collate '000.bquote.R' '000.import.R' '000.re-exports.R'
'009.deprecation.R' '010.tweakable.R' '010.utils-parallelly.R'
'backend_api-01-FutureBackend-class.R'
'backend_api-03.MultiprocessFutureBackend-class.R'
'backend_api-11.ClusterFutureBackend-class.R'
'backend_api-11.MulticoreFutureBackend-class.R'
'backend_api-11.SequentialFutureBackend-class.R'
'backend_api-13.MultisessionFutureBackend-class.R'
'backend_api-ConstantFuture-class.R'
'backend_api-Future-class.R' 'backend_api-FutureRegistry.R'
'backend_api-UniprocessFuture-class.R'
'backend_api-evalFuture.R' 'core_api-cancel.R'
'core_api-future.R' 'core_api-reset.R' 'core_api-resolved.R'
'core_api-value.R' 'delayed_api-futureAssign.R'
'delayed_api-futureOf.R' 'demo_api-mandelbrot.R’
'infix_api-01-futureAssign_OP.R' 'infix_api-02-globals_OP.R'
'infix_api-03-seed_OP.R' 'infix_api-04-stdout_OP.R'
"infix_api-05-conditions_OP.R' 'infix_api-06-lazy_OP.R’
'infix_api-07-label_OP.R' 'infix_api-08-plan_OP.R'
'infix_api-09-tweak_OP.R'
'protected_api-FutureCondition-class.R'
‘protected_api-FutureGlobals-class.R'
‘protected_api-FutureResult-class.R' ‘protected_api-futures.R'
'protected_api-globals.R' 'protected_api-journal.R'
'protected_api-resolve.R' 'protected_api-result.R'
'protected_api-signalConditions.R' 'testme.R' 'utils-basic.R'
'utils-conditions.R' 'utils-connections.R' 'utils-debug.R’
'utils-immediateCondition.R' 'utils-marshalling R’
'utils-objectSize.R' 'utils-options.R' 'utils-prune_pkg_code.R'
'utils-registerClusterTypes.R' 'utils-rng_utils.R'
'utils-signalEarly.R' 'utils-stealth_sample.R’
'utils-sticky_globals.R' 'utils-tweakExpression.R'
'utils-uuid.R' 'utils-whichIndex.R' 'utils_api-backtrace.R'
'utils_api-capture_journals.R" 'utils_api-futureCall.R’'
'utils_api-futureSessionInfo.R' 'utils_api-makeClusterFuture.R'
'utils_api-minifuture.R' 'utils_api-nbrOfWorkers.R'
'utils_api-plan.R' 'utils_api-plan-with.R'
'utils_api-sessionDetails.R' 'utils_api-tweak.R' 'zzz.R'

NeedsCompilation no

Author Henrik Bengtsson [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-7579-5165>)

Maintainer Henrik Bengtsson <henrikb@braju.com>
Repository CRAN
Date/Publication 2026-01-16 14:40:07 UTC

https://orcid.org/0000-0002-7579-5165

Contents 3
Contents
backtrace e 3
cancel L e e e 4
cluster e e 5
future e e e e e e 7
future AsSign L L e e e e e 13
futureOf e e 18
futures 19
futureSessionInfo L 20
multiCoTe e e e e e e e e e e e e e e e 20
mMultiSeSSION e e e e e e e e e e e e e e e e e e e 22
nbrOfWorkers 24
plan . . oo 25
TESCL . . . v e e e e e e e e e 29
TeSOIVE e 31
resolved.ClusterFuture 32
sequential L 33
value e e e e 34
7zzZ-future.options e e e e e 37
Index 42
backtrace Back trace the expressions evaluated when an error was caught
Description

Back trace the expressions evaluated when an error was caught

Usage

backtrace(future, envir = parent.frame(), ...)

Arguments
future A future with a caught error.
envir the environment where to locate the future.
Not used.
Value

A list with the future’s call stack that led up to the error.

4 cancel

Examples

my_log <- function(x) log(x)
foo <- function(...) my_log(...)

f <- future({ foo("a") })

res <- tryCatch({
v <- value(f)

}, error = function(ex) {
t <- backtrace(f)
print(t)

»

cancel Cancel a future

Description

Cancels futures, with the option to interrupt running ones.

Usage
cancel(x, interrupt = TRUE, ...)
Arguments
X A Future.
interrupt If TRUE, running futures are interrupted, if the future backend supports it.
All arguments used by the S3 methods.
Value

cancel () returns (invisibly) the canceled Futures after flagging them as "canceled" and possibly
interrupting them as well.

Canceling a lazy or a finished future has no effect.

See Also

A canceled future can be reset () to a lazy, vanilla future such that it can be relaunched, possible
on another future backend.

cluster

Examples

Set up two parallel workers
plan(multisession, workers = 2)

Launch two long running future
fs <- lapply(c(1, 2), function(duration) {
future({
Sys.sleep(duration)
42
D)
»

Wait until at least one of the futures is resolved
while ('any(resolved(fs))) Sys.sleep(0.1)

Cancel the future that is not yet resolved
r <- resolved(fs)
cancel(fs[!r])

Get the value of the resolved future
f <- fs[r]

v <- value(f)

message("Result: ", v)

The value of the canceled future is an error
try(v <- value(fs[!rl))

Shut down parallel workers

plan(sequential)
cluster Create a cluster future whose value will be resolved asynchronously in
a parallel process
Description

WARNING: This function must never be called. It may only be used with plan()

Usage

cluster(
workers = availableWorkers(constraints = "connections”),
persistent = FALSE

)

6 cluster

Arguments

workers A cluster object, a character vector of host names, a positive numeric scalar,
or a function. If a character vector or a numeric scalar, a cluster object is
created using makeClusterPSOCK (workers). If a function, it is called without
arguments when the future is created and its value is used to configure the work-
ers. The function should return any of the above types. If workers == 1, then all
processing using done in the current/main R session and we therefore fall back
to using a sequential future. To override this fallback, use workers = I(1).

persistent If FALSE, the evaluation environment is cleared from objects prior to the eval-
uation of the future.

Not used.

Details

A cluster future is a future that uses cluster evaluation, which means that its value is computed and
resolved in parallel in another process.

This function is must not be called directly. Instead, the typical usages are:

Evaluate futures via a single background R process on the local machine
plan(cluster, workers = I(1))

Evaluate futures via two background R processes on the local machine
plan(cluster, workers = 2)

Evaluate futures via a single R process on another machine on on the
local area network (LAN)
plan(cluster, workers = "raspberry-pi")

Evaluate futures via a single R process running on a remote machine
plan(cluster, workers = "pi.example.org")

Evaluate futures via four R processes, one running on the local machine,
two running on LAN machine 'n1' and one on a remote machine
plan(cluster, workers = c("localhost”, "n1"”, "n1", "pi.example.org"))

See Also

For alternative future backends, see the ’A Future for R: Available Future Backends’ vignette and
https://www.futureverse.org/backends.html.

Examples

Use cluster futures
cl <- parallel::makeCluster(2, timeout = 60)
plan(cluster, workers = cl)

A global variable

https://www.futureverse.org/backends.html

future 7

a<-290

Create future (explicitly)
f <- future({

b <-3

c<-2

ax*xbxc
»

A cluster future is evaluated in a separate process.

Regardless, changing the value of a global variable will
not affect the result of the future.

a<-7

print(a)

v <- value(f)
print(v)
stopifnot(v == 0)

CLEANUP
parallel::stopCluster(cl)

future Create a future

Description

Creates a future that evaluates an R expression or a future that calls an R function with a set of
arguments. How, when, and where these futures are evaluated can be configured using plan() such
that it is evaluated in parallel on, for instance, the current machine, on a remote machine, or via a
job queue on a compute cluster. Importantly, any R code using futures remains the same regardless
on these settings and there is no need to modify the code when switching from, say, sequential to
parallel processing.

Usage

future(
expr,
envir = parent.frame(),
substitute = TRUE,
lazy = FALSE,
seed = FALSE,
globals = TRUE,
packages = NULL,
stdout = TRUE,
conditions = "condition”,
label = NULL,

)

futureCall(

FUN,

args = list(),

envir = parent.frame(),
lazy = FALSE,

seed = FALSE,

globals = TRUE,

packages = NULL,

stdout = TRUE,

conditions = "condition",
label = NULL,

)

minifuture(

expr,
substitute = TRUE,
globals = NULL,
packages = NULL,

future

stdout = NA,
conditions = NULL,
seed = NULL,
envir = parent.frame()
)
Arguments
expr An R expression.
envir The environment from where global objects should be identified.
substitute If TRUE, argument expr is substitute():ed, otherwise not.
lazy If FALSE (default), the future is resolved eagerly (starting immediately), other-
wise not.
seed (optional) If TRUE, the random seed, that is, the state of the random number

generator (RNG) will be set such that statistically sound random numbers are
produced (also during parallelization). If FALSE (default), it is assumed that the
future expression does neither need nor use random numbers generation. To use
a fixed random seed, specify a L’Ecuyer-CMRG seed (seven integer) or a regular
RNG seed (a single integer). If the latter, then a L’Ecuyer-CMRG seed will be
automatically created based on the given seed. Furthermore, if FALSE, then the
future will be monitored to make sure it does not use random numbers. If it does
and depending on the value of option future.rng.onMisuse, the check is ignored,
an informative warning, or error will be produced. If seed is NULL, then the
effect is as with seed = FALSE but without the RNG check being performed.

future 9

globals (optional) a logical, a character vector, or a named list to control how globals
are handled. For details, see section ’Globals used by future expressions’ in the
help for future().

packages (optional) a character vector specifying packages to be attached in the R envi-

ronment evaluating the future.

stdout If TRUE (default), then the standard output is captured, and re-outputted when
value() is called. If FALSE, any output is silenced (by sinking it to the null de-
vice as it is outputted). Using stdout = structure(TRUE, drop = TRUE) causes
the captured standard output to be dropped from the future object as soon as it
has been relayed. This can help decrease the overall memory consumed by cap-
tured output across futures. Using stdout = NA fully avoids intercepting the
standard output; behavior of such unhandled standard output depends on the
future backend.

conditions A character string of conditions classes to be captured and relayed. The default
is to relay all conditions, including messages and warnings. To drop all con-
ditions, use conditions = character(@). Errors are always relayed. Attribute
exclude can be used to ignore specific classes, e.g. conditions = structure(”condition”,
exclude = "message”) will capture all condition classes except those that in-
herits from the message class. Using conditions = structure(..., drop=
TRUE) causes any captured conditions to be dropped from the future object as
soon as it has been relayed, e.g. by value(f). This can help decrease the over-
all memory consumed by captured conditions across futures. Using conditions
=NULL (not recommended) avoids intercepting conditions, except from errors;
behavior of such unhandled conditions depends on the future backend and the
environment from which R runs.

label A character string label attached to the future.
FUN A function to be evaluated.
args A list of arguments passed to function FUN.

Additional arguments passed to Future().

Details

The state of a future is either unresolved or resolved. The value of a future can be retrieved using
v <- value(f). Querying the value of a non-resolved future will block the call until the future
is resolved. It is possible to check whether a future is resolved or not without blocking by using
resolved(f). It is possible to cancel() a future that is being resolved. Failed, canceled, and
interrupted futures can be reset () to a lazy, vanilla future that can be relaunched.

The futureCall() function works analogously to do.call(), which calls a function with a set of
arguments. The difference is that do.call() returns the value of the call whereas futureCall()
returns a future.

Value

future () returns Future that evaluates expression expr.

futureCall() returns a Future that calls function FUN with arguments args.

10 future

minifuture(expr) creates a future with minimal overhead, by disabling user-friendly behaviors,
e.g. automatic identification of global variables and packages needed, and relaying of output. Un-
less you have good reasons for using this function, please use future() instead. This function
exists mainly for the purpose of profiling and identifying which automatic features of future()
introduce extra overhead.

Eager or lazy evaluation

By default, a future is resolved using eager evaluation (Lazy = FALSE). This means that the expres-
sion starts to be evaluated as soon as the future is created.

As an alternative, the future can be resolved using lazy evaluation (lazy = TRUE). This means that
the expression will only be evaluated when the value of the future is requested. Note that this
means that the expression may not be evaluated at all - it is guaranteed to be evaluated if the value
is requested.

Globals used by future expressions

Global objects (short globals) are objects (e.g. variables and functions) that are needed in order for
the future expression to be evaluated while not being local objects that are defined by the future
expression. For example, in

a <- 42
f <- future({ b <-2; axb })

variable a is a global of future assignment f whereas b is a local variable. In order for the future to
be resolved successfully (and correctly), all globals need to be gathered when the future is created
such that they are available whenever and wherever the future is resolved.

The default behavior (globals = TRUE), is that globals are automatically identified and gathered.
More precisely, globals are identified via code inspection of the future expression expr and their
values are retrieved with environment envir as the starting point (basically via get(global, envir
=envir, inherits = TRUE)). In most cases, such automatic collection of globals is sufficient and
less tedious and error prone than if they are manually specified.

However, for full control, it is also possible to explicitly specify exactly which the globals are by
providing their names as a character vector. In the above example, we could use

a <- 42
f <= future({ b <- 2; a * b }, globals = "a")

Yet another alternative is to explicitly specify also their values using a named list as in

a <- 42

f <= future({ b <- 2; a * b }, globals = list(a = a))
or

f <= future({ b <- 2; a * b }, globals = list(a = 42))

Specifying globals explicitly avoids the overhead added from automatically identifying the globals
and gathering their values. Furthermore, if we know that the future expression does not make use
of any global variables, we can disable the automatic search for globals by using

future 11

f <- future({ a <- 42; b <- 2; a x b }, globals = FALSE)

Future expressions often make use of functions from one or more packages. As long as these
functions are part of the set of globals, the future package will make sure that those packages are
attached when the future is resolved. Because there is no need for such globals to be frozen or
exported, the future package will not export them, which reduces the amount of transferred objects.
For example, in

X <= rnorm(1000)
f <= future({ median(x) 3})

variable x and median() are globals, but only x is exported whereas median (), which is part of the
stats package, is not exported. Instead it is made sure that the stats package is on the search path
when the future expression is evaluated. Effectively, the above becomes

X <= rnorm(1000)

f <- future({
library(stats)
median(x)

D
To manually specify this, one can either do

x <= rnorm(1000)
f <- future({
median(x)
}, globals = list(x = x, median = stats::median)

or

X <= rnorm(1000)

f <= future({
library(stats)
median(x)

}, globals = list(x = x))

Both are effectively the same.

Although rarely needed, a combination of automatic identification and manual specification of glob-
als is supported via attributes add (to add false negatives) and ignore (to ignore false positives) on
value TRUE. For example, with globals = structure(TRUE, ignore = "b", add = "a") any glob-
als automatically identified, except b, will be used, in addition to global a.

Author(s)

The future logo was designed by Dan LaBar and tweaked by Henrik Bengtsson.

See Also

How, when and where futures are resolved is given by the future backend, which can be set by the
end user using the plan() function.

12 future

Examples

Evaluate futures in parallel
plan(multisession)

Data

x <= rnorm(100)

y <=2 *x + 0.2 + rnorm(100)
w<-1+x"2

EXAMPLE: Regular assignments (evaluated sequentially)

fitA <- Im(y ~ x, weights = w) ## with offset
fitB <- Im(y ~ x - 1, weights = w) ## without offset
fitC <- {

w <- 1 + abs(x) ## Different weights
Im(y ~ x, weights = w)

3

print(fitA)

print(fitB)

print(fitC)

EXAMPLE: Future assignments (evaluated in parallel)
fitA %<-% Im(y ~ x, weights = w) ## with offset
fitB %<-% lm(y ~ x - 1, weights = w) ## without offset
fitC %<-% {

w <- 1 + abs(x)

Im(y ~ x, weights = w)
3
print(fitA)
print(fitB)
print(fitC)

EXAMPLE: Explicitly create futures (evaluated in parallel)
and retrieve their values
fA <- future(Im(y ~ x, weights = w))
fB <- future(Im(y ~ x - 1, weights = w))
fC <- future({
w <- 1 + abs(x)
Im(y ~ x, weights = w)
»
fitA <- value(fA)
fitB <- value(fB)
fitC <- value(fC)
print(fitA)
print(fitB)
print(fitC)

EXAMPLE: futureCall() and do.call()
X <= 1:100

futureAssign 13

y0 <- do.call(sum, args = list(x))
print(ye)

f1 <- futureCall(sum, args = list(x))
y1 <- value(f1)
print(y1)

futureAssign Create a future assignment

Description

X %<-% value (also known as a "future assignment") and futureAssign("x", value) create a Fu-
ture that evaluates the expression (value) and binds it to variable x (as a promise). The expression
is evaluated in parallel in the background. Later on, when x is first queried, the value of future is
automatically retrieved as it were a regular variable and x is materialized as a regular value.

Usage

futureAssign(
X,
value,
envir = parent.frame(),
substitute = TRUE,
lazy = FALSE,
seed = FALSE,
globals = TRUE,
packages = NULL,
stdout = TRUE,
conditions = "condition”,
label = NULL,

L

assign.env = envir

X %<-% value

fassignment %globals% globals
fassignment %packages% packages

fassignment %seed% seed
fassignment %stdout% capture
fassignment %conditions% capture

fassignment %lazy% lazy

14 futureAssign

fassignment %label% label
fassignment %plan% strategy

fassignment %tweak% tweaks

Arguments

X the name of a future variable, which will hold the value of the future expression
(as a promise).

value An R expression.
envir The environment from where global objects should be identified.
substitute If TRUE, argument expr is substitute():ed, otherwise not.

lazy If FALSE (default), the future is resolved eagerly (starting immediately), other-
wise not.

seed (optional) If TRUE, the random seed, that is, the state of the random number
generator (RNG) will be set such that statistically sound random numbers are
produced (also during parallelization). If FALSE (default), it is assumed that the
future expression does neither need nor use random numbers generation. To use
a fixed random seed, specify a L’Ecuyer-CMRG seed (seven integer) or a regular
RNG seed (a single integer). If the latter, then a L’Ecuyer-CMRG seed will be
automatically created based on the given seed. Furthermore, if FALSE, then the
future will be monitored to make sure it does not use random numbers. If it does
and depending on the value of option future.rng.onMisuse, the check is ignored,
an informative warning, or error will be produced. If seed is NULL, then the
effect is as with seed = FALSE but without the RNG check being performed.

globals (optional) a logical, a character vector, or a named list to control how globals
are handled. For details, see section ’Globals used by future expressions’ in the
help for future().

packages (optional) a character vector specifying packages to be attached in the R envi-
ronment evaluating the future.

stdout If TRUE (default), then the standard output is captured, and re-outputted when
value() is called. If FALSE, any output is silenced (by sinking it to the null de-
vice as it is outputted). Using stdout = structure(TRUE, drop = TRUE) causes
the captured standard output to be dropped from the future object as soon as it
has been relayed. This can help decrease the overall memory consumed by cap-
tured output across futures. Using stdout = NA fully avoids intercepting the
standard output; behavior of such unhandled standard output depends on the
future backend.

conditions A character string of conditions classes to be captured and relayed. The default
is to relay all conditions, including messages and warnings. To drop all con-
ditions, use conditions = character (). Errors are always relayed. Attribute
exclude can be used to ignore specific classes, e.g. conditions = structure(”condition”,
exclude = "message") will capture all condition classes except those that in-
herits from the message class. Using conditions = structure(..., drop=

futureAssign 15

TRUE) causes any captured conditions to be dropped from the future object as
soon as it has been relayed, e.g. by value(f). This can help decrease the over-
all memory consumed by captured conditions across futures. Using conditions
=NULL (not recommended) avoids intercepting conditions, except from errors;
behavior of such unhandled conditions depends on the future backend and the
environment from which R runs.

label A character string label attached to the future.

assign.env The environment to which the variable should be assigned.

fassignment The future assignment, e.g. x %<-% { expr J}.

capture If TRUE, the standard output will be captured, otherwise not.

strategy The backend controlling how the future is resolved. See plan() for further
details.

tweaks A named list (or vector) with arguments that should be changed relative to the

current backend.

Additional arguments passed to Future().

Details

For a future created via a future assignment, x %<-% value or futureAssign("x", value), the
value is bound to a promise, which when queried will internally call value() on the future and
which will then be resolved into a regular variable bound to that value. For example, with future
assignment x %<-% value, the first time variable x is queried the call blocks if, and only if, the
future is not yet resolved. As soon as it is resolved, and any succeeding queries, querying x will
immediately give the value.

The future assignment construct x %<-% value is not a formal assignment per se, but a binary infix
operator on objects x and expression value. However, by using non-standard evaluation, this con-
structs can emulate an assignment operator similar to x <- value. Due to R’s precedence rules of
operators, future expressions often need to be explicitly bracketed, e.g. x %<-% { a+b }.

Value

futureAssign() and x %<-% expr returns the Future invisibly, e.g. f <- futureAssign("x",
expr) and f <- (x %<-% expr).

Adjust future arguments of a future assignment

future() and futureAssign() take several arguments that can be used to explicitly specify what
global variables and packages the future should use. They can also be used to override default be-
haviors of the future, e.g. whether output should be relayed or not. When using a future assignment,
these arguments can be specified via corresponding assignment expression. For example, x %<-%
{ rnorm(10) } %seed% TRUE corresponds to futureAssign("x", { rnorm(1@) }, seed = TRUE).
Here are a several examples.

To explicitly specify variables and functions that a future assignment should use, use %globals%. To
explicitly specify which packages need to be attached for the evaluate to success, use %packages¥.
For example,

16

futureAssign

> x <= rnorm(1000)

>y %<-% { median(x) } %globals% list(x = x) %packages% "stats"
>y

[1] -0.03956372

The median() function is part of the ’stats’ package.

To declare that you will generate random numbers, use %seed%, e.g.

> X %<-% { rnorm(3) } %seed% TRUE
> X
[1]1 -0.2590562 -1.2262495 ©0.8858702

To disable relaying of standard output (e.g. print(), cat(), and str()), while keeping relaying of
conditions (e.g. message () and

> x %<-% { cat("Hello\n"); message("Hi there"); 42 } %stdout% FALSE
>y <-13

>z<-x+ty

Hi there

>z

[1] 55

To disable relaying of conditions, use %conditions%, e.g.

> x %<-% { cat("Hello\n"); message("Hi there"); 42 } %conditions% character(@)
>y <-13

>z <-xty

Hello

>z

[1] 55

> X %<=% { print(1:10); message("Hello"); 42 } %stdout% FALSE

>y <-13
>z <-x+y
Hello

>z

[11 55

To create a future without launching in such that it will only be processed if the value is really
needed, use %lazy%, e.g.

> x %<-% { Sys.sleep(5); 42 } %lazy% TRUE
>y <- sum(1:10)
> system.time(z <- x + y)
user system elapsed
0.004 0.000 5.008
>z
[1] 97

futureAssign 17

Error handling

Because future assignments are promises, errors produced by the the future expression will not be
signaled until the value of the future is requested. For example, if you create a future assignment
that produce an error, you will not be affected by the error until you "touch" the future-assignment
variable. For example,

> X %<-% { stop("boom”) }
>y <- sum(1:10)

>z <-Xx+y

Error in eval(quote({ : boom

Use alternative future backend for future assignment

Futures are evaluated on the future backend that the user has specified by plan(). With regular fu-

tures, we can temporarily use another future backend by wrapping our code inwith(plan(...), { ... }1,
or temporarily inside a function using with(plan(...), local = TRUE). To achieve the same for

a specific future assignment, use %plan%, e.g.

> plan(multisession)

> X %<-% { 42 }

>y %<=% { 13 } %plan% sequential
>z<-x+ty

>z

[1] 55

Here x is resolved in the background via the multisession backend, whereas y is resolved sequen-
tially in the main R session.

Getting the future object of a future assignment

The underlying Future of a future variable x can be retrieved without blocking using f <- future0f (x),
e.g.

> X %<-% { stop("boom”) }

> f_x <- futureOf(x)

> resolved(f_x)

[1] TRUE

> X

Error in eval(quote({ : boom
> value(f_x)

Error in eval(quote({ : boom

Technically, both the future and the variable (promise) are assigned at the same time to environment
assign.env where the name of the future is . future_<name>.

18 futureOf
futureOf Get the future of a future variable
Description
Get the future of a future variable that has been created directly or indirectly via future().
Usage
futureOf
var = NULL,
envir = parent.frame(),
mustExist = TRUE,
default = NA,
drop = FALSE
)
Arguments
var the variable. If NULL, all futures in the environment are returned.
envir the environment where to search from.
mustExist If TRUE and the variable does not exists, then an informative error is thrown,
otherwise NA is returned.
default the default value if future was not found.
drop if TRUE and var is NULL, then returned list only contains futures, otherwise
also default values
Value
A Future (or default). If var is NULL, then a named list of Future:s are returned.
Examples

a %<-% {1}

f <- futureOf(a)
print(f)

b %<-% { 2}

f <- future0f(b)
print(f)

All futures
fs <- future0f()
print(fs)

futures 19

Futures part of environment
env <- new.env()
env$c %<-% { 3 }

f <- futureOf(env$c)
print(f)

f2 <- futureOf(c, envir = env)
print(f2)

3 <~ futureOf("c”, envir = env)
print(f3)

fs <- futureOf(envir = env)
print(fs)

futures Get all futures in a container

Description

Gets all futures in an environment, a list, or a list environment and returns an object of the same
class (and dimensions). Non-future elements are returned as is.

Usage
futures(x, ...)
Arguments
X An environment, a list, or a list environment.
Not used.
Details

This function is useful for retrieve futures that were created via future assignments (%<-%) and
therefore stored as promises. This function turns such promises into standard Future objects.

Value

An object of same type as x and with the same names and/or dimensions, if set.

20 multicore

futureSessionInfo Get future-specific session information and validate current backend

Description

Get future-specific session information and validate current backend

Usage

futureSessionInfo(test = TRUE, anonymize = TRUE)

Arguments
test If TRUE, one or more futures are created to query workers and validate their
information.
anonymize If TRUE, user names and host names are anonymized.
Value
Nothing.
Examples
plan(multisession, workers = 2)
futureSessionInfo()
plan(sequential)
multicore Create a multicore future whose value will be resolved asynchronously
in a forked parallel process
Description

WARNING: This function must never be called. It may only be used with plan()

Usage
multicore(..., workers = availableCores(constraints = "multicore”))
Arguments
workers The number of parallel processes to use. If a function, it is called without argu-

ments when the future is created and its value is used to configure the workers.
If workers == 1, then all processing using done in the current/main R session
and we therefore fall back to using a sequential future. To override this fallback,
use workers =I(1).

Not used.

multicore 21

Details

A multicore future is a future that uses multicore evaluation, which means that its value is computed
and resolved in parallel in another process.

This function is must not be called directly. Instead, the typical usages are:

Evaluate futures in parallel on the local machine via as many forked
processes as available to the current R process
plan(multicore)

Evaluate futures in parallel on the local machine via two forked processes
plan(multicore, workers = 2)

Support for forked (''multicore'’) processing

Not all operating systems support process forking and thereby not multicore futures. For instance,
forking is not supported on Microsoft Windows. Moreover, process forking may break some R
environments such as RStudio. Because of this, the future package disables process forking also
in such cases. See parallelly: :supportsMulticore() for details. Trying to create multicore
futures on non-supported systems or when forking is disabled will result in multicore futures falling
back to becoming sequential futures. If used in RStudio, there will be an informative warning:

> plan(multicore)
Warning message:
In supportsMulticoreAndRStudio(...) :

[ONE-TIME WARNING] Forked processing ('multicore') is not supported when
running R from RStudio because it is considered unstable. For more details,
how to control forked processing or not, and how to silence this warning in
future R sessions, see ?parallelly::supportsMulticore

See Also

For processing in multiple background R sessions, see multisession futures.

For alternative future backends, see the *A Future for R: Available Future Backends’ vignette and
https://www.futureverse.org/backends.html.

Use parallelly::availableCores() to see the total number of cores that are available for the
current R session. Use availableCores(”"multicore”) > 1L to check whether multicore futures
are supported or not on the current system.

Examples

Use multicore futures
plan(multicore)

A global variable
a<-0

Create future (explicitly)
f <= future({

https://www.futureverse.org/backends.html

22 multisession

b <-3

c<-2

axbxc
»

A multicore future is evaluated in a separate forked
process. Changing the value of a global variable
will not affect the result of the future.

a<-7

print(a)

v <- value(f)
print(v)
stopifnot(v == @)

multisession Create a multisession future whose value will be resolved asyn-
chronously in a parallel R session

Description

WARNING: This function must never be called. It may only be used with plan()

Usage
multisession(
workers = availableCores(constraints = "connections-16"),
rscript_libs = .libPaths()
)
Arguments
workers The number of parallel processes to use. If a function, it is called without argu-

ments when the future is created and its value is used to configure the workers.
If workers == 1, then all processing using done in the current/main R session
and we therefore fall back to using a sequential future. To override this fallback,
use workers = I(1).

rscript_libs A character vector of R package library folders that the workers should use.
The default is . 1libPaths() so that multisession workers inherits the same li-
brary path as the main R session. To avoid this, use plan(multisession,
., rscript_libs = NULL). Important: Note that the library path is set on the
workers when they are created, i.e. when plan(multisession) is called. Any
changes to .1ibPaths() in the main R session after the workers have been cre-
ated will have no effect. This is passed down as-is to parallelly: :makeClusterPSOCK().

Additional arguments passed to Future().

multisession 23

Details
A multisession future is a future that uses multisession evaluation, which means that its value is
computed and resolved in parallel in another R session.

This function is must not be called directly. Instead, the typical usages are:

Evaluate futures in parallel on the local machine via as many background
processes as available to the current R process
plan(multisession)

Evaluate futures in parallel on the local machine via two background
processes
plan(multisession, workers = 2)

The background R sessions (the "workers") are created using makeClusterPSOCK().
For the total number of R sessions available including the current/main R process, see parallelly: :availableCores().

A multisession future is a special type of cluster future.

Value
A MultisessionFuture. If workers == 1, then all processing is done in the current/main R session
and we therefore fall back to using a lazy future. To override this fallback, use workers = I(1).
See Also

For processing in multiple forked R sessions, see multicore futures.

Use parallelly::availableCores() to see the total number of cores that are available for the
current R session.

Examples

Use multisession futures
plan(multisession)

A global variable
a<-0

Create future (explicitly)
f <- future({

b <-3
c <-2
axbxc

b

A multisession future is evaluated in a separate R session.
Changing the value of a global variable will not affect

the result of the future.

a<-7

print(a)

24 nbrOfWorkers

v <- value(f)
print(v)
stopifnot(v == 0)

Explicitly close multisession workers by switching plan
plan(sequential)

nbrOfWorkers Get the number of workers available

Description

Get the number of workers available

Usage

nbrOfWorkers(evaluator = NULL)

nbrOfFreeWorkers(evaluator = NULL, background = FALSE, ...)
Arguments
evaluator A future evaluator function. If NULL (default), the current evaluator as returned

by plan() is used.

background If TRUE, only workers that can process a future in the background are consid-
ered. If FALSE, also workers running in the main R process are considered, e.g.
when using the ’sequential’ backend.

Not used; reserved for future use.

Value

nbrofWorkers() returns a positive number in 1,2, 3, ..., which for some future backends may also
be +Inf.

nbrofFreeWorkers() returns a non-negative number in 0, 1, 2, 3, ... which is less than or equal to
nbrofWorkers().

Examples

plan(multisession)
nbrOfWorkers() ## == availableCores()

plan(sequential)
nbrOfWorkers() ## ==

plan 25

plan Plan how to resolve a future

Description

This function allows the user to plan the future, more specifically, it specifies how future():s are
resolved, e.g. sequentially or in parallel.

Usage

plan(
strategy = NULL,

L

substitute = TRUE,

.skip = FALSE,
.call = TRUE,
.cleanup = NA,
.init = TRUE
)
S3 method for class 'FutureStrategylList'
with(data, expr, ..., local = FALSE, envir = parent.frame(), .cleanup = NA)
tweak(strategy, ..., penvir = parent.frame())
Arguments
strategy A future backend or the name of one.
substitute If TRUE, the strategy expression is substitute():d, otherwise not.
.skip (internal) If TRUE, then attempts to set a future backend that is the same as what
is currently in use, will be skipped.
.call (internal) Used for recording the call to this function.
.cleanup (internal) Used to stop implicitly started clusters.
.init (internal) Used to initiate workers.
data The future plan to use temporarily, e.g. plan(multisession).
expr The R expression to be evaluated.
local If TRUE, then the future plan specified by data is applied temporarily in the
calling frame. Argument expr must not be specified if local = TRUE.
envir The environment where the future plan should be set and the expression evalu-
ated.
penvir The environment used when searching for a future function by its name.

Additional arguments overriding the default arguments of the evaluation func-
tion. Which additional arguments are supported depends on which future back-
end is used, e.g. several support argument workers but not all. For details, see
the individual backends of which some are linked to below.

26 plan

Details

The default backend is sequential, but another one can be set using plan(), e.g. plan(multisession)
will launch parallel workers running in the background, which then will be used to resolve future.
To shut down background workers launched this way, call plan(sequential).

Value

plan() returns a the previous plan invisibly if a new future backend is chosen, otherwise it returns
the current one visibly.

The value of the expression evaluated (invisibly).

a future function.

Built-in evaluation strategies

The future package provides the following built-in backends:

sequential: Resolves futures sequentially in the current R process, e.g. plan(sequential).

multisession: Resolves futures asynchronously (in parallel) in separate R sessions running in
the background on the same machine, e.g. plan(multisession) and plan(multisession,
workers = 2).

multicore: Resolves futures asynchronously (in parallel) in separate forked R processes run-
ning in the background on the same machine, e.g. plan(multicore) and plan(multicore,
workers = 2). This backend is not supported on Windows.

cluster: Resolves futures asynchronously (in parallel) in separate R sessions running typically on
one or more machines, e.g. plan(cluster), plan(cluster, workers = 2), and plan(cluster,
workers =c("n1", "n1", "n2", "server.remote.org")).

Other evaluation strategies available

In addition to the built-in ones, additional parallel backends are implemented in future-backend
packages future.callr and future.mirai that leverage R package callr and mirai:

callr: Similar to multisession, this resolved futures in parallel in background R sessions on the
local machine via the callr package, e.g. plan(future.callr::callr) and plan(future.callr::callr,
workers = 2). The difference is that each future is processed in a fresh parallel R worker,
which is automatically shut down as soon as the future is resolved. This can help decrease
the overall memory. Moreover, contrary to multisession, callr does not rely on socket
connections, which means it is not limited by the number of connections that R can have open
at any time.

mirai_multisession: Similar to multisession, this resolved futures in parallel in background R
sessions on the local machine via the mirai package, e.g. plan(future.mirai::mirai_multisession)
and plan(future.mirai::mirai_multisession, workers =2).

mirai_cluster: Similar to cluster, this resolved futures in parallel via pre-configured R mirai
daemon processes, e.g. plan(future.mirai: :mirai_cluster).

Another example is the future.batchtools package, which leverages batchtools package, to resolve
futures via high-performance compute (HPC) job schedulers, e.g. LSF, Slurm, TORQUE/PBS, Grid
Engine, and OpenLava;

plan 27

batchtools_slurm: The backend resolved futures via the Slurm scheduler, e.g. plan(future.batchtools: :batchtools_
batchtools_torque: The backend resolved futures via the TORQUE/PBS scheduler, e.g. plan(future.batchtools: : bat

batchtools_sge: The backend resolved futures via the Grid Engine (SGE, AGE) scheduler, e.g.
plan(future.batchtools: :batchtools_sge).

batchtools_1sf: The backend resolved futures via the Load Sharing Facility (LSF) scheduler,
e.g. plan(future.batchtools: :batchtools_1sf).

batchtools_openlava: The backend resolved futures via the OpenLava scheduler, e.g. plan(future.batchtools: :batct

For package developers

Please refrain from modifying the future backend inside your packages / functions, i.e. do not call
plan() in your code. Instead, leave the control on what backend to use to the end user. This idea
is part of the core philosophy of the future framework—as a developer you can never know what
future backends the user have access to. Moreover, by not making any assumptions about what
backends are available, your code will also work automatically with any new backends developed
after you wrote your code.

If you think it is necessary to modify the future backend within a function, then make sure to undo
the changes when exiting the function. This can be achieved by using with(plan(...), local =
TRUE), e.g.

my_fcn <- function(x) {
with(plan(multisession), local = TRUE)
y <- analyze(x)
summarize(y)

3

This is important because the end-user might have already set the future strategy elsewhere for other
purposes and will most likely not known that calling your function will break their setup. Remember,
your package and its functions might be used in a greater context where multiple packages and
functions are involved and those might also rely on the future framework, so it is important to avoid
stepping on others’ toes.

Using plan() in scripts and vignettes

When writing scripts or vignettes that use futures, try to place any call to plan() as far up (i.e. as
early on) in the code as possible. This will help users to quickly identify where the future plan is
set up and allow them to modify it to their computational resources. Even better is to leave it to the
user to set the plan() prior to source():ing the script or running the vignette. If a ‘. future.R’
exists in the current directory and / or in the user’s home directory, it is sourced when the future
package is loaded. Because of this, the ‘. future.R’ file provides a convenient place for users to set
the plan(). This behavior can be controlled via an R option—see future options for more details.

See Also

Use plan() to set a future to become the new default strategy.

28

Examples

a <- b <-c <-NA_real_

An sequential future
plan(sequential)
f <- future({
a<-7
b <-3
c <-2
axbxc
»
y <- value(f)
print(y)
str(list(a = a, b = b, c =c)) ## ALl NAs

A sequential future with lazy evaluation
plan(sequential)
f <- future({

a<-17
b <-3
c<-2
axbxc

}, lazy = TRUE)

y <- value(f)

print(y)

str(list(a = a, b = b, ¢ = c)) ## ALl NAs

A multicore future (specified as a string)
plan("multicore")
f <- future({
a<-7
b <-3
c <-2
a*b=*c
»
y <- value(f)
print(y)
str(list(a = a, b =b, ¢ =c)) ## All NAs

Multisession futures gives an error on R CMD check on
Windows (but not Linux or macOS) for unknown reasons.

The same code works in package tests.

A multisession future (specified via a string variable)

plan("future: :multisession”)
f <- future({

a<-17
b <-3
c<-2

plan

reset 29

ax*xbxc
»
y <- value(f)
print(y)
str(list(a = a, b =Db, c =c)) ## All NAs

Explicitly specifying number of workers

(default is parallelly::availableCores())
plan(multicore, workers = 2)

message ("Number of parallel workers: ", nbrOfWorkers())

Explicitly close multisession workers by switching plan
plan(sequential)
Evaluate a future using the 'multisession' plan
with(plan(multisession, workers = 2), {

f <- future(Sys.getpid())

w_pid <- value(f)
»
print(c(main = Sys.getpid(), worker = w_pid))

Evaluate a future locally using the 'multisession' plan
local({
with(plan(multisession, workers = 2), local = TRUE)

f <- future(Sys.getpid())

w_pid <- value(f)

print(c(main = Sys.getpid(), worker = w_pid))
»

reset Reset a finished, failed, canceled, or interrupted future to a lazy future

Description
A future that has successfully completed, canceled, interrupted, or has failed due to an error, can be
relaunched after resetting it.

Usage

reset(x, ...)

30 reset

Arguments
X A Future.
Not used.
Details

A lazy, vanilla Future can be reused in another R session. For instance, if we do:

library(future)

a<-2

f <- future(42 * a, lazy = TRUE)
saveRDS(f, "myfuture.rds")

Then we can read and evaluate the future in another R session using:

library(future)

f <- readRDS("myfuture.rds")
v <- value(f)

print(v)

#> [1] 84

Value

reset () returns a lazy, vanilla Future that can be relaunched. Resetting a running future results in
a FutureError.

Examples

Like mean(), but fails 90% of the time

shaky_mean <- function(x) {
if (as.double(Sys.time()) %% 1 < ©.90) stop("boom")
mean(x)

}

X <= rnorm(100)
Calculate the mean of 'x' with a risk of failing randomly
f <- future({ shaky_mean(x) 3})

Relaunch until success
repeat ({
v <- tryCatch(value(f), error = identity)
if (!inherits(v, "error")) break
message("Resetting failed future, and retry in 0.1 seconds”)
f <- reset(f)
Sys.sleep(0.1)
B

cat("mean:", v, "\n")

resolve

31

resolve

Resolve one or more futures synchronously

Description

This function provides an efficient mechanism for waiting for multiple futures in a container (e.g.
list or environment) to be resolved while in the meanwhile retrieving values of already resolved

futures.

Usage

resolve(
X’

idxs = NULL,

recursive = 0,

result = FALSE,

stdout = FALSE,

signal = FALSE,

force = FALSE,

sleep = getOption("future.wait.interval”, 0.01),

Arguments
X A Future to be resolved, or a list, an environment, or a list environment of futures
to be resolved.
idxs (optional) integer or logical index specifying the subset of elements to check.
recursive A non-negative number specifying how deep of a recursion should be done. If
TRUE, an infinite recursion is used. If FALSE or zero, no recursion is per-
formed.
result (internal) If TRUE, the results are retrieved, otherwise not. Note that this only
collects the results from the parallel worker, which can help lower the overall la-
tency if there are multiple concurrent futures. This does not return the collected
results.
stdout (internal) If TRUE, captured standard output is relayed, otherwise not.
signal (internal) If TRUE, captured conditions are relayed, otherwise not.
force (internal) If TRUE, captured standard output and captured conditions already
relayed are relayed again, otherwise not.
sleep Number of seconds to wait before checking if futures have been resolved since
last time.
Not used.
Details

This function is resolves synchronously, i.e. it blocks until x and any containing futures are resolved.

32 resolved.ClusterFuture

Value

Returns x (regardless of subsetting or not). If signal is TRUE and one of the futures produces an
error, then that error is produced.

See Also

To resolve a future variable, first retrieve its Future object using future0f (), e.g. resolve(future0f(x)).

resolved.ClusterFuture
Check whether a future is resolved or not

Description

Check whether a future is resolved or not

Usage

S3 method for class 'ClusterFuture'
resolved(x, timeout = NULL, ...)

S3 method for class 'MulticoreFuture
resolved(x, timeout = NULL, ...)

resolved(x, ...)

Default S3 method:
resolved(x, ...)

S3 method for class 'list'
resolved(x, ...)

S3 method for class 'environment'
resolved(x, ...)

S3 method for class 'Future'

resolved(x, ...)

Arguments
X A Future, a list, or an environment (which also includes list environment).
timeout (numeric) The maximum time (in seconds) for polling the worker for a re-

sponse. If no response is available within this time limit, FALSE is returned

assuming the future is still being processed. If NULL, the value defaults to
getOption("future.<type>.resolved.timeout"”), then getOption("future.resolved. timeout")
and finally 0.01 (seconds), where <type> corresponds to the type of future, e.g.

cluster and multicore.

Not used.

sequential 33

Details

resolved() attempts to launch a lazy future, if there is an available worker, otherwise not.

resolved() methods must always return TRUE or FALSE values, must always launch lazy futures,
and must never block indefinitely. This is because it should always be possible to poll futures until
they are resolved using resolved(), e.g. while (!all(resolved(futures))) Sys.sleep(5).

Each future backend must implement a resolved() method. It should return either TRUE or
FALSE, or throw a FutureError (which indicate a significant, often unrecoverable infrastructure
problem, or an interrupt).

Value

A logical vector of the same length and dimensions as x. Each element is TRUE unless the corre-
sponding element is a non-resolved future in case it is FALSE. It never signals an error.

The default method always returns TRUE.

Behavior of cluster and multisession futures

If all worker slots are occupied, resolved() for ClusterFuture and MultisessionFuture will
attempt to free one up by checking whether one of the futures is resolved. If there is one, then its
result is collected in order to free up one worker slot.

resolved() for ClusterFuture may receive immediate condition objects, rather than a FutureRe-
sult, when polling the worker for results. In such cases, the condition object is collected and another
poll it performed. Up to 100 immediate conditions may be collected this way per resolved() call,
before considering the future non-resolved and FALSE being returned.

Behavior of multicore futures

resolved() for MulticoreFuture may receive immediate condition objects, rather than a Futur-
eResult, when polling the worker for results. In such cases, all such condition objects are collected,
before considering the future non-resolved and FALSE being returned.

sequential Create a sequential future whose value will be in the current R session

Description

WARNING: This function must never be called. It may only be used with plan()

Usage
sequential(..., envir = parent.frame())
Arguments
envir The environment from where global objects should be identified.

Not used.

34 value

Details

A sequential future is a future that is evaluated sequentially in the current R session similarly to
how R expressions are evaluated in R. The only difference to R itself is that globals are validated
by default just as for all other types of futures in this package.

This function is must not be called directly. Instead, the typical usages are:

Evaluate futures sequentially in the current R process
plan(sequential)

Examples

Use sequential futures
plan(sequential)

A global variable
a<-0

Create a sequential future
f <- future({

b <-3

c<-2

ax*xbxc
»

Since 'a' is a global variable in future 'f' which

is eagerly resolved (default), this global has already
been resolved / incorporated, and any changes to 'a'
at this point will _not_ affect the value of 'f'.
a<-7

print(a)

v <- value(f)
print(v)
stopifnot(v == 0)

value The value of a future or the values of all elements in a container

Description

Gets the value of a future or the values of all elements (including futures) in a container such as a
list, an environment, or a list environment. If one or more futures is unresolved, then this function
blocks until all queried futures are resolved.

value 35

Usage

value(...)

S3 method for class 'Future'
value(future, stdout = TRUE, signal = TRUE, drop = FALSE, ...)

S3 method for class 'list'
value(

X,

idxs = NULL,

recursive = 0,

reduce = NULL,

stdout = TRUE,

signal = TRUE,

cancel = TRUE,

interrupt = cancel,

inorder = TRUE,

drop = FALSE,

force = TRUE,

sleep = getOption("future.wait.interval”, 0.01),

)
S3 method for class 'listenv'
value(

X’

idxs = NULL,

recursive = 0,

reduce = NULL,

stdout = TRUE,

signal = TRUE,

cancel = TRUE,

interrupt = cancel,

inorder = TRUE,

drop = FALSE,

force = TRUE,

sleep = getOption("future.wait.interval”, 0.01),

)
S3 method for class 'environment'
value(x, ...)
Arguments
future, x A Future, an environment, a list, or a list environment.
stdout If TRUE, standard output captured while resolving futures is relayed, otherwise

not.

36

signal

drop

idxs

recursive

reduce

value

If TRUE, conditions captured while resolving futures are relayed, otherwise not.

If TRUE, resolved futures are minimized in size and invalidated as soon the
as their values have been collected and any output and conditions have been
relayed. Combining drop = TRUE with inorder = FALSE reduces the memory
use sooner, especially avoiding the risk of holding on to future values until the
very end.

(optional) integer or logical index specifying the subset of elements to check.

A non-negative number specifying how deep of a recursion should be done. If
TRUE, an infinite recursion is used. If FALSE or zero, no recursion is per-
formed.

An optional function for reducing all the values. Optional attribute init can be
used to set initial value for the reduction. If not specified, the first value will be
used as the initial value. Reduction of values is done as soon as possible, but
always in the same order as x, unless inorder is FALSE.

cancel, interrupt

inorder

force

sleep

Value

If TRUE and signal is TRUE, non-resolved futures are canceled as soon as
an error is detected in one of the futures, before signaling the error. Argu-
ment interrupt is passed to cancel() controlling whether non-resolved fu-
tures should also be interrupted.

If TRUE, then standard output and conditions are relayed, and value reduction,
is done in the order the futures occur in x, but always as soon as possible. This is
achieved by buffering the details until they can be released. By setting inorder
= FALSE, no buffering takes place and everything is relayed and reduced as soon
as a new future is resolved. Regardlessly, the values are always returned in the
same order as Xx.

(internal) If TRUE, captured standard output and captured conditions already
relayed are relayed again, otherwise not.

Number of seconds to wait before checking if futures have been resolved since
last time.

All arguments used by the S3 methods.

value() of a Future object returns the value of the future, which can be any type of R object.

value() of a list, an environment, or a list environment returns an object with the same number
of elements and of the same class. Names and dimension attributes are preserved, if available. All
future elements are replaced by their corresponding value() values. For all other elements, the
existing object is kept as-is.

If signal is TRUE and one of the futures produces an error, then that error is relayed. Any re-
maining, non-resolved futures in x are canceled, prior to signaling such an error. If the future was
interrupted, canceled, or the parallel worker terminated abruptly ("crashed"), then a Futurelnter-
ruptError is signaled.

zzz-future.options 37

Examples

B m o

A single future

#H# ———mm

x <- sample(100, size = 50)

f <- future(mean(x))

v <- value(f)

message("The average of 50 random numbers in [1,100] is: ", v)

B m o
Ten futures

B m o
xs <- replicate(10, { list(sample(100, size = 50)) })

fs <- lapply(xs, function(x) { future(mean(x)) })

The 10 values as a list (because 'fs' is a list)
vs <- value(fs)

message("The ten averages are:")

str(vs)

The 10 values as a vector (by manually unlisting)
vs <- value(fs)
vs <- unlist(vs)

message("The ten averages are: ", paste(vs, collapse =", "))
The values as a vector (by reducing)

vs <- value(fs, reduce = c)

message("The ten averages are: ", paste(vs, collapse =", "))

Calculate the sum of the averages (by reducing)

total <- value(fs, reduce = “+7)
message("The sum of the ten averages is: ", total)
zzz-future.options Options used for futures
Description

Below are the R options and environment variables that are used by the future package and pack-
ages enhancing it.

WARNING: Note that the names and the default values of these options may change in future ver-
sions of the package. Please use with care until further notice.
Packages must not change future options

Just like for other R options, as a package developer you must not change any of the below future. x
options. Only the end-user should set these. If you find yourself having to tweak one of the options,

38

zzz-future.options

make sure to undo your changes immediately afterward. For example, if you want to bump up the
future.globals.maxSize limit when creating a future, use something like the following inside
your function:

oopts <- options(future.globals.maxSize = 1.0 * 1e9) ## 1.0 GB
on.exit(options(oopts))
f <- future({ expr }) ## Launch a future with large objects

Options for controlling futures

‘future.plan’: (character string or future function) Default future backend used unless otherwise
specified via plan(). This will also be the future plan set when calling plan(”default”).
If not specified, this option may be set when the future package is loaded if command-
line option --parallel=ncores (short -p ncores) is specified; if ncores > 1, then op-
tion ‘future.plan’ is set to multisession otherwise sequential (in addition to option
‘mc. cores’ being set to ncores, if ncores >= 1). (Default: sequential)

‘future.globals.maxSize’: (numeric) Maximum allowed total size (in bytes) of global variables
identified. This is used to protect against exporting too large objects to parallel workers by
mistake. Transferring large objects over a network, or over the internet, can be slow and
therefore introduce a large bottleneck that increases the overall processing time. It can also
result in large egress or ingress costs, which may exist on some systems. If set of +Inf, then
the check for large globals is skipped. (Default: 500 * 1024 * 2 = 500 MiB)

‘future.globals.onReference’: (beta feature - may change) (character string) Controls whether
the identified globals should be scanned for so called references (e.g. external pointers and
connections) or not. It is unlikely that another R process ("worker") can use a global that uses
a internal reference of the master R process—we call such objects non-exportable globals. If
this option is "error”, an informative error message is produced if a non-exportable global is
detected. If "warning”, a warning is produced, but the processing will continue; it is likely
that the future will be resolved with a run-time error unless processed in the master R pro-
cess (e.g. plan(sequential) and plan(multicore)). If "ignore”, no scan is performed.
(Default: "ignore" but may change)

‘future.resolve.recursive’: (integer) An integer specifying the maximum recursive depth to
which futures should be resolved. If negative, nothing is resolved. If @, only the future itself
is resolved. If 1, the future and any of its elements that are futures are resolved, and so on. If
+Inf, infinite search depth is used. (Default: 0)

‘future.onFutureCondition.keepFuture’: (logical) If TRUE, a FutureCondition keeps a copy
of the Future object that triggered the condition. If FALSE, it is dropped. (Default: TRUE)

‘future.wait.timeout’: (numeric) Maximum waiting time (in seconds) for a future to resolve or
for a free worker to become available before a timeout error is generated. (Default: 30 * 24 *
60 * 60 (= 30 days))

‘future.wait.interval’: (numeric) Initial interval (in seconds) between polls. This controls the
polling frequency for finding an available worker when all workers are currently busy. It also
controls the polling frequency of resolve(). (Default: .01 = 1 ms)

‘future.wait.alpha’: (numeric) Positive scale factor used to increase the interval after each poll.
(Default: 1.01)

zzz-tfuture.options 39

Options for built-in sanity checks

Ideally, the evaluation of a future should have no side effects. To protect against unexpected side
effects, the future framework comes with a set of built-in tools for checking against this. Below R
options control these built-in checks and what should happen if they fail. You may modify them for
troubleshooting purposes, but please refrain from disabling these checks when there is an underlying
problem that should be fixed.

Beta features: Please consider these checks to be "under construction'.

‘future.connections.onMisuse’: (character string) A future must close any connections it opens
and must not close connections it did not open itself. If such misuse is detected and this option
is set to "error”, then an informative error is produced. If it is set to "warning”, a warning
is produced. If"ignore”, no check is performed. (Default: "warning")

‘future.defaultDevice.onMisuse’: (character string) A future must open graphics devices ex-
plicitly, if it creates new plots. It should not rely on the default graphics device that is given by
R option "default”, because that rarely does what is intended. If such misuse is detected and
this option is set to "error”, then an informative error is produced. If it is set to "warning”,
a warning is produced. If”ignore”, no check is performed. (Default: "warning”)

‘future.devices.onMisuse’: (character string) A future must close any graphics devices it opens
and must not close devices it did not open itself. If such misuse is detected and this option is
set to "error”, then an informative error is produced. If it is set to "warning”, a warning is
produced. If"ignore”, no check is performed. (Default: "warning")

‘future.globalenv.onMisuse’: (character string) Assigning variables to the global environment
for the purpose of using the variable at a later time makes no sense with futures, because
the next the future may be evaluated in different R process. To protect against mistakes,
the future framework attempts to detect when variables are added to the global environment.
If this is detected, and this option is set to "error”, then an informative error is produced.
If "warning”, then a warning is produced. If "ignore”, no check is performed. (Default:
"ignore")

‘future.rng.onMisuse’: (character string) If random numbers are used in futures, then parallel
RNG should be declared in order to get statistical sound RNGs. You can declare this by
specifying future argument seed = TRUE. The defaults in the future framework assume that no
random number generation (RNG) is taken place in the future expression because L’Ecuyer-
CMRG RNGs come with an unnecessary overhead if not needed. To protect against mistakes
of not declaring use of the RNG, the future framework detects when random numbers were
used despite not declaring such use. If this is detected, and this options is set "error”, then
an informative error is produced. If "warning”, then a warning is produced. If "ignore”, no
check is performed. (Default: "warning")

Options for debugging futures

‘future.debug’: (logical) If TRUE, extensive debug messages are generated. (Default: FALSE)

Options for controlling package startup

‘future.startup.script’: (character vector or a logical) Specifies zero of more future startup
scripts to be sourced when the future package is attached. It is only the first existing script that

40 zzz-future.options

is sourced. If none of the specified files exist, nothing is sourced—there will be neither a warn-
ing nor an error. If this option is not specified, environment variable R_FUTURE_STARTUP_SCRIPT
is considered, where multiple scripts may be separated by either a colon (:) or a semicolon
(;)- If neither is set, or either is set to TRUE, the default is to look for a ‘. future.R’ script in
the current directory and then in the user’s home directory. To disable future startup scripts,
set the option or the environment variable to FALSE. Importantly, this option is always set to
FALSE if the future package is loaded as part of a future expression being evaluated, e.g. in a
background process. In other words, they are sourced in the main R process but not in future
processes. (Default: TRUE in main R process and FALSE in future processes / during future
evaluation)

‘future.cmdargs’: (character vector) Overrides commandArgs () when the future package is loaded.

Options for configuring low-level system behaviors

‘future.fork.multithreading.enable’ (beta feature - may change): (logical) Enable or disable
multi-threading while using forked parallel processing. If FALSE, different multi-thread library
settings are overridden such that they run in single-thread mode. Specifically, multi-threading
will be disabled for OpenMP (which requires the RhpeBLASct] package) and for ReppPa-
rallel. If TRUE, or not set (the default), multi-threading is allowed. Parallelization via multi-
threaded processing (done in native code by some packages and external libraries) while at
the same time using forked (aka "multicore") parallel processing is known to unstable. Note
that this is not only true when using plan(multicore) but also when using, for instance,
mclapply () of the parallel package. (Default: not set)

‘future.output.windows.reencode’: (logical) Enable or disable re-encoding of UTF-8 symbols
that were incorrectly encoded while captured. In R (< 4.2.0) and on older versions of MS Win-
dows, R cannot capture UTF-8 symbols as-is when they are captured from the standard output.
For examples, a UTF-8 check mark symbol ("\u2713") would be relayed as "<U+2713>" (a
string with eight ASCII characters). Setting this option to TRUE will cause value() to attempt
to recover the intended UTF-8 symbols from <U+nnnn> string components, if, and only if, the
string was captured by a future resolved on MS Windows. (Default: TRUE)

Options for demos

‘future.demo.mandelbrot.region’: (integer) Either a named list of mandelbrot() arguments
or an integer in {1, 2, 3} specifying a predefined Mandelbrot region. (Default: 1L)

‘future.demo.mandelbrot.nrow’: (integer) Number of rows and columns of tiles. (Default: 3L)

Deprecated or for internal prototyping

The following options exists only for troubleshooting purposes and must not be used in production.
If used, there is a risk that the results are non-reproducible if processed elsewhere. To lower the risk
of them being used by mistake, they are marked as deprecated and will produce warnings if set.

‘future.globals.onMissing’: (character string) Action to take when non-existing global vari-
ables ("globals" or "unknowns") are identified when the future is created. If "error”, an error
is generated immediately. If "ignore”, no action is taken and an attempt to evaluate the future
expression will be made. The latter is useful when there is a risk for false-positive globals be-
ing identified, e.g. when future expression contains non-standard evaluation (NSE). (Default:
"ignore")

zzz-future.options 41

‘future.globals.method’: (character string) Method used to identify globals. For details, see
globalsOf (). (Default: "ordered")

‘future.globals.resolve’: (logical) If TRUE, globals that are Future objects (typically created
as explicit futures) will be resolved and have their values (using value()) collected. Because
searching for unresolved futures among globals (including their content) can be expensive, the
default is not to do it and instead leave it to the run-time checks that assert proper ownership
when resolving futures and collecting their values. (Default: FALSE)

Environment variables that set R options

All of the above R ‘future.*’ options can be set by corresponding environment variable R_FUTURE _*

when the future package is loaded. This means that those environment variables must be set before

the future package is loaded in order to have an effect. For example, if R_FUTURE_RNG_ONMISUSE="1ignore",

then option ‘future.rng.onMisuse’ is setto "ignore"” (character string). Similarly, if R_FUTURE _GLOBALS_MAXSIZE="5000
then option ‘future.globals.maxSize’ is set to 50000000 (numeric).

Options moved to the *parallelly’ package
Several functions have been moved to the parallelly package:

e parallelly::availableCores()
e parallelly::availableWorkers()
e parallelly: :makeClusterMPI()
e parallelly: :makeClusterPSOCK()
e parallelly: :makeNodePSOCK()
e parallelly: :supportsMulticore()
The options and environment variables controlling those have been adjusted accordingly to have dif-
ferent prefixes. For example, option ‘future.fork.enable’ has been renamed to ‘parallelly. fork.enable’
and the corresponding environment variable R_FUTURE_FORK_ENABLE has been renamed to R_PARALLELLY_FORK_ENABLE.

For backward compatibility reasons, the parallelly package will support both versions for a long
foreseeable time. See the parallelly::parallelly.options page for the settings.

See Also

To set R options or environment variables when R starts (even before the future package is loaded),
see the Startup help page. The startup package provides a friendly mechanism for configurating
R’s startup process.

Examples

Allow at most 5 MB globals per futures
options(future.globals.maxSize = 5e6)

Be strict; catch all RNG mistakes
options(future.rng.onMisuse = "error")

https://cran.r-project.org/package=startup

Index

.future.R, 27

.future.R (zzz-future.options), 37
%->% (futureAssign), 13

%<-% (futureAssign), 13
%conditions% (futureAssign), 13
%globals% (futureAssign), 13
%label% (futureAssign), 13
%lazy% (futureAssign), 13
%packages¥% (futureAssign), 13
%plan% (futureAssign), 13
%seed% (futureAssign), 13
%stdout% (futureAssign), 13
%tweak% (futureAssign), 13

availableCores, 21
backtrace, 3

cancel, 4
cancel(), 9
canceled, 29
cluster, 5, 6, 26
commandArgs, 40
conditions, 31, 36

do.call, 9

environment, 8, 14, 15, 33
expression, 8, 14

function, 9

Future, 4,9, 13, 15,17, 18, 30-32, 35, 41

future, 7

future options, 27

Future(), 9, 15, 22

future(), 9, 10, 14, 15, 18, 25

future.ClusterFuture.clusterkEvalQ
(zzz-future.options), 37

future.cmdargs (zzz-future.options), 37

future.connections.onMisuse
(zzz-future.options), 37

42

future.
future.

future.

future.

future.

future.

future.

future.

future.

future.

future.

future.

future.

future.
future.

future.
future.

future.
future.

future.
future.

future.

debug (zzz-future.options), 37
defaultDevice.onMisuse
(zzz-future.options), 37
demo.mandelbrot.nrow
(zzz-future.options), 37
demo.mandelbrot.region
(zzz-future.options), 37
devices.onMisuse
(zzz-future.options), 37
fork.multithreading.enable
(zzz-future.options), 37
globalenv.onMisuse
(zzz-future.options), 37
globals.maxSize
(zzz-future.options), 37
globals.method
(zzz-future.options), 37
globals.objectSize.method
(zzz-future.options), 37
globals.onMissing
(zzz-future.options), 37
globals.onReference
(zzz-future.options), 37
globals.resolve
(zzz-future.options), 37
journal (zzz-future.options), 37
onFutureCondition.keepFuture
(zzz-future.options), 37
options (zzz-future.options), 37
output.windows.reencode
(zzz-future.options), 37
plan (zzz-future.options), 37
resolve.recursive
(zzz-future.options), 37
rng.onMisuse, 8, 14
rng.onMisuse
(zzz-future.options), 37
startup.script
(zzz-future.options), 37

INDEX

future.wait.alpha (zzz-future.options),
37

future.wait.interval
(zzz-future.options), 37

future.wait.timeout
(zzz-future.options), 37

futureAssign, 13

futureAssign(), 15

futureCall (future), 7

FutureError, 30, 33

FutureInterruptError, 36

futureOf, 17, 18

futureof (), 32

FutureResult, 33

futures, 19

futureSessionInfo, 20

globalsOf, 41

list, 9
list environment, 32

makeClusterPSOCK, 6
makeClusterPSOCK(), 23
mandelbrot(), 40

mclapply, 40

minifuture (future), 7
multicore, 20, 23, 26

MulticoreFuture (multicore), 20
multisession, 17, 21,22, 26
MultisessionFuture (multisession), 22

nbrOfFreeWorkers (nbrOfWorkers), 24
nbrOfWorkers, 24

parallelly: :availableCores(), 21, 23, 41
parallelly::availableWorkers(), 41
parallelly: :makeClusterMPI(), 41
parallelly: :makeClusterPSOCK(), 22, 41
parallelly: :makeNodePSOCK(), 41
parallelly: :parallelly.options, 41
parallelly: :supportsMulticore(), 21, 41
plan, 25

plan(), 5,7, 11,15,17, 20,22, 24,27, 33, 38
promise, 13

R_FUTURE_CLUSTERFUTURE_CLUSTEREVALQ
(zzz-future.options), 37

R_FUTURE_CONNECTIONS_ONMISUSE
(zzz-future.options), 37

43

R_FUTURE_DEBUG (zzz-future.options), 37
R_FUTURE_DEFAULTDEVICE_ONMISUSE
(zzz-future.options), 37
R_FUTURE_DEMO_MANDELBROT_NROW
(zzz-future.options), 37
R_FUTURE_DEMO_MANDELBROT_REGION
(zzz-future.options), 37
R_FUTURE_DEVICES_ONMISUSE
(zzz-future.options), 37
R_FUTURE_FORK_MULTITHREADING_ENABLE
(zzz-future.options), 37
R_FUTURE_GLOBALENV_ONMISUSE
(zzz-future.options), 37
R_FUTURE_GLOBALS_MAXSIZE
(zzz-future.options), 37
R_FUTURE_GLOBALS_METHOD
(zzz-future.options), 37
R_FUTURE_GLOBALS_OBJECTSIZE_METHOD
(zzz-future.options), 37
R_FUTURE _GLOBALS_ONMISSING
(zzz-future.options), 37
R_FUTURE_GLOBALS_ONREFERENCE
(zzz-future.options), 37
R_FUTURE_GLOBALS_RESOLVE
(zzz-future.options), 37
R_FUTURE_JOURNAL (zzz-future.options),
37
R_FUTURE_ONFUTURECONDITION_KEEPFUTURE
(zzz-future.options), 37
R_FUTURE_OUTPUT_WINDOWS_REENCODE
(zzz-future.options), 37
R_FUTURE_PLAN (zzz-future.options), 37
R_FUTURE_RESOLVE_RECURSIVE
(zzz-future.options), 37
R_FUTURE_RESOLVED_TIMEOUT
(zzz-future.options), 37
R_FUTURE _RNG_ONMISUSE
(zzz-future.options), 37
R_FUTURE_STARTUP_SCRIPT
(zzz-future.options), 37
R_FUTURE_WAIT_ALPHA
(zzz-future.options), 37
R_FUTURE_WAIT_INTERVAL
(zzz-future.options), 37
R_FUTURE_WAIT_TIMEOUT
(zzz-future.options), 37
reset, 29
reset(), 4,9

44
resolve, 31
resolved, 9

resolved (resolved.ClusterFuture), 32
resolved.ClusterFuture, 32

sequential, 21, 26, 33
Startup, 41
substitute, 8, 14
tweak (plan), 25

uniprocess (sequential), 33

value, 9, 34
value(), 15

with.FutureStrategylList (plan), 25

zzz-future.options, 37

INDEX

	backtrace
	cancel
	cluster
	future
	futureAssign
	futureOf
	futures
	futureSessionInfo
	multicore
	multisession
	nbrOfWorkers
	plan
	reset
	resolve
	resolved.ClusterFuture
	sequential
	value
	zzz-future.options
	Index

