Package ‘fdacluster’

January 15, 2026

Title Joint Clustering and Alignment of Functional Data
Version 0.4.2

Description Implementations of the k-means, hierarchical agglomerative and
DBSCAN clustering methods for functional data which allows for jointly
aligning and clustering curves. It supports functional data defined on
one-dimensional domains but possibly evaluating in multivariate codomains.
It supports functional data defined in arrays but also via the 'fd' and
'funData’ classes for functional data defined in the 'fda' and 'funData’
packages respectively. It currently supports shift, dilation and affine
warping functions for functional data defined on the real line and uses the
SRVF framework to handle boundary-preserving warping for functional data
defined on a specific interval. Main reference for the k-means algorithm:
Sangalli L.M., Secchi P., Vantini S., Vitelli V. (2010) * " k-mean alignment
for curve clustering" <doi:10.1016/j.csda.2009.12.008>. Main reference for
the SRVF framework: Tucker, J. D., Wu, W., & Srivastava, A. (2013)

" Generative models for functional data using phase and amplitude separation”
<doi:10.1016/j.csda.2012.12.001>.

License GPL (>=3)

Encoding UTF-8

LazyData true

LazyDataCompression xz

LinkingTo Rcpp, ReppArmadillo, nloptr
RoxygenNote 7.3.3

Suggests fda, funData, future, knitr, rmarkdown, testthat (>= 3.0.0),
withr

Imports cli, cluster, dbscan, fdasrvf, future.apply, ggplot2, IpSolve,
nloptr, progressr, Rcpp, rlang, tibble

Depends R (>=4.2.0)

URL https://astamm.github.io/fdacluster/,
https://github.com/astamm/fdacluster
Config/testthat/edition 3

https://doi.org/10.1016/j.csda.2009.12.008
https://doi.org/10.1016/j.csda.2012.12.001
https://astamm.github.io/fdacluster/
https://github.com/astamm/fdacluster

autoplot.caps

VignetteBuilder knitr

NeedsCompilation yes
Author Aymeric Stamm [aut, cre] (ORCID:

<https://orcid.org/0000-0002-8725-3654>),
Laura Sangalli [ctb],
Piercesare Secchi [ctb],
Simone Vantini [ctb],
Valeria Vitelli [ctb],
Alessandro Zito [ctb]

Maintainer Aymeric Stamm <aymeric.stamm@cnrs.fr>
Repository CRAN
Date/Publication 2026-01-14 23:40:02 UTC

Contents
autoplot.Caps e e 2
autoplot.mCaps o e e e e e e 3
CAPS -« v v e e e e e e e e e e e e e e 4
COMPATE_CAPS -« « « v v v e e e e e e e e e e e e e e e e e e 5
diagnostic_plot 7
fdadbscan e 8
fdadist e e e e 11
fdahclust e e e e 12
fdakmeans e 15
PIOL.CAPS e e e e e 19
plotmeaps 19
SIM30_caps e 20
SIM30_MCAPS . .« « v v v o e e e e e e e e e e e e e e e e e e 21
simulated30 L L e e e e 21
simulated30_sub L L, 22
simulated90 L L e e e 22

Index 23

autoplot.caps Visualizes the result of a clustering strategy stored in a caps object
with ggplot2
Description

This function creates a visualization of the result of the k-mean alignment algorithm and invisibly
returns the corresponding ggplot2::ggplot object which enable further customization of the plot. The
user can choose to visualize either the amplitude information data in which case original and aligned
curves are shown or the phase information data in which case the estimated warping functions are
shown.

https://orcid.org/0000-0002-8725-3654

autoplot.mcaps 3

Usage
S3 method for class 'caps'
autoplot(object, type = c("amplitude”, "phase"”), ...)
Arguments
object An object of class caps.
type A string specifying the type of information to display. Choices are "amplitude”

for plotting the original and aligned curves which represent amplitude informa-
tion data or "phase” for plotting the corresponding warping functions which
represent phase information data. Defaults to "amplitude”.

Not used.

Value

A ggplot2::ggplot object invisibly.

Examples

ggplot2::autoplot(sim3@_caps, type = "amplitude”)
ggplot2: :autoplot(sim3@_caps, type = "phase")

autoplot.mcaps Visualizes results of multiple clustering strategies using ggplot2

Description

This is an S3 method implementation of the ggplot2::autoplot() generic for objects of class
mcaps to visualize the performances of multiple caps objects applied on the same data sets either
in terms of WSS or in terms of silhouette values.

Usage
S3 method for class 'mcaps'
autoplot(
object,
validation_criterion = c("wss"”, "silhouette"),
what = c("mean”, "distribution”),

4 caps

Arguments

object An object of class mcaps.

validation_criterion
A string specifying the validation criterion to be used for the comparison. Choices
are "wss"” or "silhouette"”. Defaults to "wss".

what A string specifying the kind of information to display about the validation cri-
terion. Choices are "mean” (which plots the mean values) or "distribution”
(which plots the boxplots). Defaults to "mean”.

Other arguments passed to specific methods.

Value

An object of class ggplot2::ggplot.

Examples

p <- ggplot2::autoplot(sim30@_mcaps)

caps Class for clustering with amplitude and phase separation

Description

The k-means algorithm with joint amplitude and phase separation produces a number of outputs.
This class is meant to encapsulate them into a single object for providing dedicated S3 methods for
e.g. plotting, summarizing, etc. The name of the class stems from Clustering with Amplitude and
Phase Separation.

Usage

as_caps(x)
is_caps(x)

Arguments

X A list coercible into an object of class caps.

Details
An object of class caps is a list with the following components:

e original_curves: A numeric matrix of shape N x L x M storing a sample with the N
L-dimensional original curves observed on grids of size M.

e original_grids: A numeric matrix of size N x M storing the grids of size M on which
original curves are evaluated;

compare_caps 5

* aligned_grids: A numeric matrix of size N x M storing the grids of size M on which
original curves must be evaluated to be aligned;

e center_curves: A numeric matrix of shape K x L x M storing the K centers which are
L-dimensional curves observed on a grid of size M

* center_grids: A numeric matrix of size K x M storing the grids of size M on which center
curves are evaluated;

* warpings: A numeric matrix of shape N x M storing the estimated warping functions for
each of the NV curves evaluated on the within-cluster common grids of size M;

* n_clusters: An integer value storing the number of clusters;

* memberships: An integer vector of length N storing the cluster ID which each curve belongs
to;

* distances_to_center: A numeric vector of length N storing the distance of each curve to
the center of its cluster;

* silhouettes: A numeric vector of length N storing the silhouette values of each observation;

e amplitude_variation: A numeric value storing the fraction of total variation explained by
amplitude variability.

* total_variation: A numeric value storing the amount of total variation.

* n_iterations: An integer value storing the number of iterations performed until conver-
gence;

e call_name: A string storing the name of the function that was used to produce the k-means
alignment results;

* call_args: A list containing the exact arguments that were passed to the function call_name
that produced this output.

Value
The function as_caps () returns an object of class caps. The function is_caps() returns a boolean
which evaluates to TRUE is the input object is of class caps.

Examples

as_caps(sim30_caps)
is_caps(sim30_caps)

compare_caps Generates results of multiple clustering strategies

Description

This function searches for clusters in the input data set using different strategies and generates an
object of class mcaps which stores multiple objects of class caps. This is a helper function to
facilitate comparison of clustering methods and choice of an optimal one.

6 compare_caps

Usage

compare_caps(
X!
Y,
n_clusters = 1:5,
is_domain_interval = FALSE,

transformation = c("identity"”, "srvf"),
metric = c("12", "normalized_12", "pearson"),
clustering_method = c("kmeans”, "hclust-complete”, "hclust-average”, "hclust-single”,
"dbscan"),
warping_class = c("none”, "shift"”, "dilation", "affine”, "bpd"),
centroid_type = c("mean”, "medoid"”, "median”, "lowess"”, "poly"),
cluster_on_phase = FALSE
)
Arguments

X A numeric vector of length M or a numeric matrix of shape N x M or an
object of class funData: : funData. If a numeric vector or matrix, it specifies
the grid(s) of size M on which each of the NV curves have been observed. If an
object of class funData: : funData, it contains the whole functional data set and
the y argument is not used.

y Either a numeric matrix of shape N x M or a numeric array of shape N x L x M
or an object of class fda: : fd. If a numeric matrix or array, it specifies the V-
sample of L-dimensional curves observed on grids of size M. If an object of
class fda: : fd, it contains all the necessary information about the functional data
set to be able to evaluate it on user-defined grids.

n_clusters An integer vector specifying a set of clustering partitions to create. Defaults to

1:5.
is_domain_interval

A boolean specifying whether the sample of curves is defined on a fixed interval.
Defaults to FALSE.

transformation A string specifying the transformation to apply to the original sample of curves.
Choices are no transformation (transformation = "identity") or square-root
velocity function transformation = "srvf". Defaults to "identity".

metric A string specifying the metric used to compare curves. Choices are "12",
"normalized_12" or "pearson”. If transformation == "srvf", the metric
must be "12" because the SRVF transform maps absolutely continuous func-
tions to square-integrable functions. If transformation == "identity" and
warping_classiseither dilation or affine, the metric cab be either "normalized_12"
or "pearson”. The L2 distance is indeed not dilation-invariant or affine-invariant.
The metric can also be "12" if warping_class == "shift". Defaults to "12".

clustering_method
A character vector specifying one or more clustering methods to be fit. Choices
are "kmeans”, "hclust-complete”, "hclust-average”, "hclust-single” or
"dbscan”. Defaults to all of them.

diagnostic_plot 7

warping_class A character vector specifying one or more classes of warping functions to use
for curve alignment. Choices are "affine”, "dilation”, "none”, "shift" or
"bpd". Defaults to all of them.

centroid_type A character vector specifying one or more ways to compute centroids. Choices
are "mean”, "medoid"”, "median”, "lowess" or "poly". Defaults to all of them.

cluster_on_phase
A boolean specifying whether clustering should be based on phase variation or
amplitude variation. Defaults to FALSE which implies amplitude variation.

Value

An object of class mcaps which is a tibble::tibble storing the objects of class caps in corre-
spondence of each combination of possible choices from the input arguments.

Examples

Compare k-means results with k = 1, 2, 3, 4, 5 using mean centroid and
various warping classes.
Not run:
sim30@_mcaps <- compare_caps(
X = simulated3@_sub$x,
y = simulated30_sub$y,

warping_class = c("none”, "shift”, "dilation”, "affine"),
clustering_method = "kmeans”,
centroid_type = "mean”

)

End(Not run)

Then visualize the results

Either with ggplot2 via ggplot2::autoplot(sim3@_mcaps)
or using graphics::plot()

You can visualize the WSS values:

plot(sim3@_mcaps, validation_criterion = "wss”, what = "mean")
plot(sim3@_mcaps, validation_criterion = "wss"”, what = "distribution")
Or the average silhouette values:
plot(sim3@_mcaps, validation_criterion = "silhouette”, what = "mean"”)
plot(sim3@_mcaps, validation_criterion = "silhouette”, what = "distribution”)
diagnostic_plot Diagnostic plot for the result of a clustering strategy stored in a caps
object
Description

This function plots the values of the distance to center and silhouette for each observation. Obser-
vations are ordered within cluster by decreasing value of silhouette.

8 fdadbscan
Usage
diagnostic_plot(x)
Arguments
X An object of class caps.
Value
An object of class ggplot2::ggplot.
Examples
diagnostic_plot(sim30@_caps)
fdadbscan Performs density-based clustering for functional data with amplitude
and phase separation
Description
This function extends DBSCAN to functional data. It includes the possibility to separate amplitude
and phase information.
Usage
fdadbscan(
X ’
Y,
is_domain_interval = FALSE,
transformation = c("identity"”, "srvf"),
warping_class = c("none”, "shift"”, "dilation”, "affine”, "bpd"),
centroid_type = "mean”,
metric = c("12", "normalized_12", "pearson"),

cluster_on_phase = FALSE,
use_verbose = FALSE,

warping_options = c(0.15, 0.15),
maximum_number_of_iterations = 100L,
number_of_threads = 1L,
parallel_method = 0oL,
distance_relative_tolerance = 0.001,
use_fence = FALSE,
check_total_dissimilarity = TRUE,
compute_overall_center = FALSE

fdadbscan 9

Arguments
X A numeric vector of length M or a numeric matrix of shape N x M or an
object of class funData: :funData. If a numeric vector or matrix, it specifies
the grid(s) of size M on which each of the NV curves have been observed. If an
object of class funData: : funData, it contains the whole functional data set and
the y argument is not used.
y Either a numeric matrix of shape N x M or a numeric array of shape N x L x M

or an object of class fda: : fd. If a numeric matrix or array, it specifies the N-
sample of L-dimensional curves observed on grids of size M. If an object of
class fda: : fd, it contains all the necessary information about the functional data
set to be able to evaluate it on user-defined grids.

is_domain_interval
A boolean specifying whether the sample of curves is defined on a fixed interval.
Defaults to FALSE.

transformation A string specifying the transformation to apply to the original sample of curves.
Choices are no transformation (transformation = "identity") or square-root
velocity function transformation = "srvf". Defaults to "identity".

warping_class A string specifying the class of warping functions. Choices are no warping
(warping_class = "none"), shift y = x + b (warping_class = "shift"), dila-
tion y = ax (warping_class = "dilation"), affine y = ax + b (warping_class
= "affine") or boundary-preserving diffeomorphism (warping_class = "bpd").
Defaults to "none”.

n on

centroid_type A string specifying the type of centroid to compute. Choices are "mean”, "median”

"medoid”, "lowess” or "poly"”. Defaults to "mean”. If LOWESS appprox-
imation is chosen, the user can append an integer between 0 and 100 as in
"lowess20"”. This number will be used as the smoother span. This gives the
proportion of points in the plot which influence the smooth at each value. Larger
values give more smoothness. The default value is 10%. If polynomial approx-
imation is chosen, the user can append an positive integer as in "poly3"”. This
number will be used as the degree of the polynomial model. The default value
is 4L.

metric A string specifying the metric used to compare curves. Choices are "12",
"normalized_12" or "pearson”. If transformation == "srvf", the metric
must be "12" because the SRVF transform maps absolutely continuous func-
tions to square-integrable functions. If transformation == "identity"” and
warping_classiseither dilation or affine, the metric cab be either "normalized_12"
or "pearson”. The L2 distance is indeed not dilation-invariant or affine-invariant.
The metric can also be "12" if warping_class == "shift". Defaults to "12".
cluster_on_phase
A boolean specifying whether clustering should be based on phase variation or
amplitude variation. Defaults to FALSE which implies amplitude variation.

use_verbose A boolean specifying whether the algorithm should output details of the steps to
the console. Defaults to FALSE.

warping_options
A numeric vector supplied as a helper to the chosen warping_class to decide on
warping parameter bounds. This is used only when warping_class != "srvf".

10 fdadbscan

maximum_number_of_iterations
An integer specifying the maximum number of iterations before the algorithm
stops if no other convergence criterion was met. Defaults to 100L.
number_of_threads
An integer value specifying the number of threads used for parallelization. De-
faults to 1L. This is used only when warping_class !="srvf".
parallel_method
An integer value specifying the type of desired parallelization for template com-
putation, If OL, templates are computed in parallel. If 1L, parallelization occurs
within a single template computation (only for the medoid method as of now).
Defaults to QL. This is used only when warping_class != "srvf".
distance_relative_tolerance
A numeric value specifying a relative tolerance on the distance update between
two iterations. If all observations have not sufficiently improved in that sense,
the algorithm stops. Defaults to 1e-3. This is used only when warping_class
!="srvf".

use_fence A boolean specifying whether the fence algorithm should be used to robus-
tify the algorithm against outliers. Defaults to FALSE. This is used only when
warping_class !="srvf".

check_total_dissimilarity
A boolean specifying whether an additional stopping criterion based on im-
provement of the total dissimilarity should be used. Defaults to TRUE. This is
used only when warping_class !="srvf".

compute_overall_center
A boolean specifying whether the overall center should be also computed. De-
faults to FALSE. This is used only when warping_class != "srvf".

Value

An object of class caps.

Examples

Extracts 15 out of the 30 simulated curves in “simulated3@_sub”~ data set
idx <- c(1:5, 11:15)

X <- simulated3@_sub$x[idx,]

y <- simulated3@_sub$y[idx, ,]

Runs an HAC with affine alignment, searching for 2 clusters
out <- fdadbscan(

X = X,
y=y,

warping_class = "affine",
metric = "normalized_12"

fdadist 11

Then visualize the results

Either with ggplot2 via ggplot2::autoplot(out)

or using graphics::plot()

You can visualize the original and aligned curves with:
plot(out, type = "amplitude”)

Or the estimated warping functions with:

plot(out, type = "phase”)

fdadist Computes the distance matrix for functional data with amplitude and
phase separation

Description

This function computes the matrix of pairwise distances between curves a functional data sample.
This can be achieved with or without phase and amplitude separation, which can be done using a
variety of warping classes.

Usage
fdadist(
X’
y = NULL,
is_domain_interval = FALSE,
transformation = c("identity"”, "srvf"),
warping_class = c("none”, "shift"”, "dilation”, "affine”, "bpd"),
metric = c(”12", "normalized_12", "pearson"),

cluster_on_phase = FALSE,
labels = NULL

)
Arguments

X A numeric vector of length M or a numeric matrix of shape N x M or an
object of class funData: : funData. If a numeric vector or matrix, it specifies
the grid(s) of size M on which each of the NV curves have been observed. If an
object of class funData: : funData, it contains the whole functional data set and
the y argument is not used.

y Either a numeric matrix of shape N x M or a numeric array of shape N x L x M

or an object of class fda: : fd. If a numeric matrix or array, it specifies the N-
sample of L-dimensional curves observed on grids of size M. If an object of
class fda: : fd, it contains all the necessary information about the functional data
set to be able to evaluate it on user-defined grids.

is_domain_interval
A boolean specifying whether the sample of curves is defined on a fixed interval.
Defaults to FALSE.

12 fdahclust

transformation A string specifying the transformation to apply to the original sample of curves.
Choices are no transformation (transformation = "identity") or square-root
velocity function transformation = "srvf". Defaults to "identity"”.

warping_class A string specifying the class of warping functions. Choices are no warping
(warping_class = "none"), shift y = x + b (warping_class = "shift"), dila-
tion y = ax (warping_class = "dilation"), affine y = ax + b (warping_class
= "affine") or boundary-preserving diffeomorphism (warping_class = "bpd").
Defaults to "none”.

metric A string specifying the metric used to compare curves. Choices are "12",
"normalized_12" or "pearson”. If transformation == "srvf", the metric
must be "12" because the SRVF transform maps absolutely continuous func-
tions to square-integrable functions. If transformation == "identity" and
warping_classiseither dilation or affine, the metric cab be either "normalized_12"
or "pearson”. The L2 distance is indeed not dilation-invariant or affine-invariant.
The metric can also be "12" if warping_class == "shift". Defaults to "12".
cluster_on_phase
A boolean specifying whether clustering should be based on phase variation or
amplitude variation. Defaults to FALSE which implies amplitude variation.

labels A character vector specifying curve labels. Defaults to NULL which uses sequen-
tial numbers as labels.

Value
A stats::dist object storing the distance matrix between the input curves using the metric specified
through the argument metric and the warping class specified by the argument warping_class.

Examples

idx <- c(1:5, 11:15, 21:25)
D <- fdadist(simulated30_sub$x[idx, 1, simulated3@_sub$y[idx, , 1)

fdahclust Performs hierarchical clustering for functional data with amplitude
and phase separation

Description

This function extends hierarchical agglomerative clustering to functional data. It includes the pos-
sibility to separate amplitude and phase information.

Usage

fdahclust(
X’
y = NULL,

fdahclust

13

n_clusters = 1L,
is_domain_interval = FALSE,

warping_class
centroid_type

transformation = c("identity"”, "srvf"),
= c¢("none”, "shift”, "dilation”, "affine”, "bpd"),
= "mean”,
", "normalized_12", "pearson"),

metric = c("12

cluster_on_phase = FALSE,
linkage_criterion = c("complete”, "average", "single"”, "ward.D2"),

use_verbose =

FALSE,

warping_options = c(0.15, @.15),
maximum_number_of_iterations = 100L,
number_of_threads = 1L,
parallel_method = 0oL,
distance_relative_tolerance = 0.001,
use_fence = FALSE,
check_total_dissimilarity = TRUE,
compute_overall_center = FALSE

Arguments

X

n_clusters

A numeric vector of length M or a numeric matrix of shape N x M or an
object of class funData: : funData. If a numeric vector or matrix, it specifies
the grid(s) of size M on which each of the N curves have been observed. If an
object of class funData: : funData, it contains the whole functional data set and
the y argument is not used.

Either a numeric matrix of shape N x M or a numeric array of shape N x L x M
or an object of class fda: : fd. If a numeric matrix or array, it specifies the -
sample of L-dimensional curves observed on grids of size M. If an object of
class fda: : fd, it contains all the necessary information about the functional data
set to be able to evaluate it on user-defined grids.

An integer value specifying the number of clusters. Defaults to 1L.

is_domain_interval

transformation

warping_class

centroid_type

A boolean specifying whether the sample of curves is defined on a fixed interval.
Defaults to FALSE.

A string specifying the transformation to apply to the original sample of curves.
Choices are no transformation (transformation = "identity") or square-root
velocity function transformation = "srvf". Defaults to "identity".

A string specifying the class of warping functions. Choices are no warping
(warping_class = "none"), shift y = x + b (warping_class = "shift"), dila-
tion y = ax (warping_class = "dilation"), affine y = ax + b (warping_class
= "affine") or boundary-preserving diffeomorphism (warping_class = "bpd").
Defaults to "none".

n on

A string specifying the type of centroid to compute. Choices are "mean”, "median”
"medoid”, "lowess"” or "poly"”. Defaults to "mean”. If LOWESS appprox-
imation is chosen, the user can append an integer between 0 and 100 as in
"lowess20". This number will be used as the smoother span. This gives the

14

fdahclust

proportion of points in the plot which influence the smooth at each value. Larger
values give more smoothness. The default value is 10%. If polynomial approx-
imation is chosen, the user can append an positive integer as in "poly3"”. This
number will be used as the degree of the polynomial model. The default value
is 4L.

metric A string specifying the metric used to compare curves. Choices are "12",
"normalized_12" or "pearson”. If transformation == "srvf", the metric
must be "12" because the SRVF transform maps absolutely continuous func-
tions to square-integrable functions. If transformation == "identity"” and

warping_classiseither dilation or affine, the metric cab be either "normalized_12"

or "pearson”. The L2 distance is indeed not dilation-invariant or affine-invariant.

The metric can also be "12" if warping_class == "shift". Defaults to "12".
cluster_on_phase

A boolean specifying whether clustering should be based on phase variation or

amplitude variation. Defaults to FALSE which implies amplitude variation.
linkage_criterion

A string specifying which linkage criterion should be used to compute dis-

tances between sets of curves. Choices are "complete” for complete link-

age, "average” for average linkage and "single” for single linkage. See

stats: :hclust() for more details. Defaults to "complete”.

use_verbose A boolean specifying whether the algorithm should output details of the steps to
the console. Defaults to FALSE.
warping_options
A numeric vector supplied as a helper to the chosen warping_class to decide on
warping parameter bounds. This is used only when warping_class != "srvf".
maximum_number_of_iterations
An integer specifying the maximum number of iterations before the algorithm
stops if no other convergence criterion was met. Defaults to 100L.
number_of_threads
An integer value specifying the number of threads used for parallelization. De-
faults to 1L. This is used only when warping_class !="srvf".
parallel_method
An integer value specifying the type of desired parallelization for template com-
putation, If OL, templates are computed in parallel. If 1L, parallelization occurs
within a single template computation (only for the medoid method as of now).
Defaults to @L. This is used only when warping_class != "srvf".
distance_relative_tolerance
A numeric value specifying a relative tolerance on the distance update between
two iterations. If all observations have not sufficiently improved in that sense,
the algorithm stops. Defaults to 1e-3. This is used only when warping_class
1="srvf".
use_fence A boolean specifying whether the fence algorithm should be used to robus-
tify the algorithm against outliers. Defaults to FALSE. This is used only when
warping_class !="srvf".
check_total_dissimilarity
A boolean specifying whether an additional stopping criterion based on im-
provement of the total dissimilarity should be used. Defaults to TRUE. This is
used only when warping_class !="srvf".

fdakmeans 15

compute_overall_center
A boolean specifying whether the overall center should be also computed. De-
faults to FALSE. This is used only when warping_class !="srvf".
Details
The number of clusters is required as input because, with functional data, once hierarchical cluster-
ing is performed, curves within clusters need to be aligned to their corresponding centroid.
Value

An object of class caps.

Examples

Extracts 15 out of the 30 simulated curves in “simulated30_sub”~ data set
idx <- c(1:5, 11:15, 21:25)

X <- simulated3@_sub$x[idx,]

y <- simulated3@_sub$y[idx, ,]

Runs an HAC with affine alignment, searching for 2 clusters
out <- fdahclust(

X = X,
y=y,
n_clusters = 2,
warping_class = "affine”,
metric = "normalized_12"
)

Then visualize the results

Either with ggplot2 via ggplot2::autoplot(out)

or using graphics::plot()

You can visualize the original and aligned curves with:
plot(out, type = "amplitude")

Or the estimated warping functions with:

plot(out, type = "phase”)

H

fdakmeans Performs k-means clustering for functional data with amplitude and
phase separation

Description

This function provides implementations of the k-means clustering algorithm for functional data,
with possible joint amplitude and phase separation. A number of warping class are implemented to
achieve this separation.

16 fdakmeans
Usage
fdakmeans (

X,

y = NULL,

n_clusters = 1L,

seeds = NULL,

seeding_strategy = c("kmeans++", "exhaustive-kmeans++", "exhaustive”, "hclust"”),

is_domain_interval = FALSE,

transformation = c("identity”, "srvf"),

warping_class = c("none”, "shift”, "dilation", "affine”, "bpd"),

centroid_type = "mean”,

metric = c("12", "normalized_12", "pearson"),

cluster_on_phase = FALSE,

use_verbose = FALSE,

warping_options = c(0.15, @.15),

maximum_number_of_iterations = 100L,

number_of_threads = 1L,

parallel_method = 0oL,

distance_relative_tolerance = 0.001,

use_fence = FALSE,

check_total_dissimilarity = TRUE,

compute_overall_center = FALSE,

add_silhouettes = TRUE

)

Arguments

X A numeric vector of length M or a numeric matrix of shape N x M or an
object of class funData: : funData. If a numeric vector or matrix, it specifies
the grid(s) of size M on which each of the N curves have been observed. If an
object of class funData: : funData, it contains the whole functional data set and
the y argument is not used.

y Either a numeric matrix of shape N x M or a numeric array of shape N x L x M
or an object of class fda: : fd. If a numeric matrix or array, it specifies the N-
sample of L-dimensional curves observed on grids of size M. If an object of
class fda: : fd, it contains all the necessary information about the functional data
set to be able to evaluate it on user-defined grids.

n_clusters An integer value specifying the number of clusters. Defaults to 1L.

seeds An integer value or vector specifying the indices of the initial centroids. If an

integer vector, it is interpreted as the indices of the intial centroids and should
therefore be of length n_clusters. If an integer value, it is interpreted as the
index of the first initial centroid and subsequent centroids are chosen accord-
ing to the k-means++ strategy. It can be NULL in which case the argument
seeding_strategy is used to automatically provide suitable indices. Defaults
to NULL.

seeding_strategy

A character string specifying the strategy for choosing the initial centroids in

non

case the argument seeds is set to NULL. Choices are "kmeans++", "exhaustive-kmeans++"

https://en.wikipedia.org/wiki/K-means%2B%2B

fdakmeans 17

which performs an exhaustive search over the choice of the first centroid, "exhaustive’
which tries on all combinations of initial centroids or "hclust"” which first per-

forms hierarchical clustering using Ward’s linkage criterion to identify initial
centroids. Defaults to "kmeans++", which is the fastest strategy.

is_domain_interval
A boolean specifying whether the sample of curves is defined on a fixed interval.
Defaults to FALSE.

transformation A string specifying the transformation to apply to the original sample of curves.
Choices are no transformation (transformation = "identity") or square-root
velocity function transformation = "srvf". Defaults to "identity".

warping_class A string specifying the class of warping functions. Choices are no warping
(warping_class = "none"), shift y = x + b (warping_class = "shift"), dila-
tion y = ax (warping_class = "dilation"), affine y = ax + b (warping_class
= "affine") or boundary-preserving diffeomorphism (warping_class = "bpd").
Defaults to "none”.

non

centroid_type A string specifying the type of centroid to compute. Choices are "mean”, "median”

"medoid”, "lowess"” or "poly"”. Defaults to "mean”. If LOWESS appprox-
imation is chosen, the user can append an integer between 0 and 100 as in
"lowess20"”. This number will be used as the smoother span. This gives the
proportion of points in the plot which influence the smooth at each value. Larger
values give more smoothness. The default value is 10%. If polynomial approx-
imation is chosen, the user can append an positive integer as in "poly3"”. This
number will be used as the degree of the polynomial model. The default value
is 4L.

metric A string specifying the metric used to compare curves. Choices are "12",
"normalized_12" or "pearson”. If transformation == "srvf", the metric
must be "12" because the SRVF transform maps absolutely continuous func-
tions to square-integrable functions. If transformation == "identity" and
warping_classiseither dilation or affine, the metric cab be either "normalized_12"
or "pearson”. The L2 distance is indeed not dilation-invariant or affine-invariant.
The metric can also be "12" if warping_class == "shift". Defaults to "12".

cluster_on_phase

A boolean specifying whether clustering should be based on phase variation or
amplitude variation. Defaults to FALSE which implies amplitude variation.

use_verbose A boolean specifying whether the algorithm should output details of the steps to
the console. Defaults to FALSE.

warping_options
A numeric vector supplied as a helper to the chosen warping_class to decide on
warping parameter bounds. This is used only when warping_class !="srvf".
maximum_number_of_iterations
An integer specifying the maximum number of iterations before the algorithm
stops if no other convergence criterion was met. Defaults to 100L.
number_of_threads

An integer value specifying the number of threads used for parallelization. De-
faults to 1L. This is used only when warping_class != "srvf".

18 fdakmeans

parallel_method
An integer value specifying the type of desired parallelization for template com-
putation, If OL, templates are computed in parallel. If 1L, parallelization occurs
within a single template computation (only for the medoid method as of now).
Defaults to @L. This is used only when warping_class != "srvf".

distance_relative_tolerance
A numeric value specifying a relative tolerance on the distance update between
two iterations. If all observations have not sufficiently improved in that sense,
the algorithm stops. Defaults to 1e-3. This is used only when warping_class
1="srvf".

use_fence A boolean specifying whether the fence algorithm should be used to robus-
tify the algorithm against outliers. Defaults to FALSE. This is used only when
warping_class != "srvf".

check_total_dissimilarity
A boolean specifying whether an additional stopping criterion based on im-
provement of the total dissimilarity should be used. Defaults to TRUE. This is
used only when warping_class !="srvf".

compute_overall_center
A boolean specifying whether the overall center should be also computed. De-
faults to FALSE. This is used only when warping_class != "srvf".

add_silhouettes
A boolean specifying whether silhouette values should be computed for each
observation for internal validation of the clustering structure. Defaults to TRUE.

Value

An object of class caps.

Examples

Extracts 15 out of the 30 simulated curves in “simulated30_sub”~ data set
idx <- c(1:5, 11:15, 21:25)

x <- simulated3@_sub$x[idx,]

y <- simulated3@_sub$y[idx, ,]

Runs a k-means clustering with affine alignment, searching for 2 clusters
out <- fdakmeans(

X = X,
y=y,
n_clusters = 2,
warping_class = "affine”,
metric = "normalized_12"
)

Then visualize the results
Either with ggplot2 via ggplot2::autoplot(out)
or using graphics::plot()

plot.caps 19

You can visualize the original and aligned curves with:
plot(out, type = "amplitude")

Or the estimated warping functions with:

plot(out, type = "phase”)

plot.caps Plots the result of a clustering strategy stored in a caps object

Description

This function creates a visualization of the result of the k-mean alignment algorithm without re-
turning the plot data as an object. The user can choose to visualize either the amplitude information
data in which case original and aligned curves are shown or the phase information data in which
case the estimated warping functions are shown.

Usage
S3 method for class 'caps'
plot(x, type = c("amplitude”, "phase"), ...)
Arguments
X An object of class caps.
type A string specifying the type of information to display. Choices are "amplitude”

for plotting the original and aligned curves which represent amplitude informa-
tion data or "phase” for plotting the corresponding warping functions which
represent phase information data. Defaults to "amplitude”.

Not used.

Examples

plot(sim30_caps, type = "amplitude")
plot(sim30_caps, type = "phase”)

plot.mcaps Plots results of multiple clustering strategies

Description

This is an S3 method implementation of the graphics: :plot() generic for objects of class mcaps
to visualize the performances of multiple caps objects applied on the same data sets either in terms
of WSS or in terms of silhouette values.

20 sim30_caps

Usage
S3 method for class 'mcaps'
plot(
X)
validation_criterion = c("wss"”, "silhouette"),
what = c("mean”, "distribution"),
)
Arguments
X An object of class mcaps.

validation_criterion

A string specifying the validation criterion to be used for the comparison. Choices
are "wss” or "silhouette”. Defaults to "wss".

what A string specifying the kind of information to display about the validation cri-
terion. Choices are "mean” (which plots the mean values) or "distribution”
(which plots the boxplots). Defaults to "mean”.

Other arguments passed to specific methods.

Examples

plot(sim30@_mcaps)

sim30_caps A caps object from simulated data for examples

Description

An object of class caps storing the result of the fdakmeans() function applied on the data set
simulated30 using the affine warping class and the Pearson metric and searching for 2 clusters.

Usage

sim30_caps

Format

An object of class caps.

sim30_mcaps 21

sim30_mcaps An mcaps object from simulated data for examples

Description

An object of class mcaps storing the result of the compare_caps() function applied on the data set
simulated30_sub for comparing the clustering structures found by the fdakmeans () function with
mean centroid type used with various classes of warping functions and varying number of clusters.

Usage

sim3@_mcaps

Format

An object of class mcaps which is effectively a tibble::tibble with 5 columns and as many rows as
there are clustering strategies to compare. The 5 column-variables are:

e n_clusters: The number of clusters;

e clustering_method: The clustering method;

* warping_class: The class of warping functions used for curve alignment;

* centroid_type: The type of centroid used to compute a cluster representative;

 caps_obj: The result of the corresponding clustering strategy as objects of class caps.

simulated3e Simulated data for examples

Description

A data set containing 30 simulated uni-dimensional curves.

Usage

simulated30

Format

A list with abscissas x and values y:

x Matrix 30x200;
y Array 30x1x200.

22 simulated90

simulated3@_sub Simulated data for examples

Description

A data set containing 30 simulated uni-dimensional curves.

Usage

simulated3@_sub

Format
A list with abscissas x and values y:

x Matrix 30x30;
y Array 30x1x30.

simulated9e Simulated data from the CSDA paper

Description

A data set containing 90 simulated uni-dimensional curves.

Usage

simulated90

Format
A list with abscissas x and values y:

x Vector of size 100;
y Matrix if size 90x100.

Index

* datasets stats:
sim30_caps, 20 stats:
sim30_mcaps, 21
simulated3o, 21 tibble

simulated30_sub, 22
simulated90, 22

as_caps (caps), 4
as_caps(), 5
autoplot.caps, 2
autoplot.mcaps, 3

caps, 3,4,4,5,7,8,10, 15, 1821
compare_caps, 5
compare_caps(), 21

diagnostic_plot, 7

fda::fd,6,9,11,13,16
fdadbscan, 8

fdadist, 11

fdahclust, 12

fdakmeans, 15
fdakmeans (), 20, 21

funData: :funData, 6,9, 11,13, 16

ggplot2: :autoplot(), 3
ggplot2: :ggplot, 24, 8
graphics::plot(), 19

is_caps (caps), 4
is_caps(), 5

plot.caps, 19
plot.mcaps, 19

sim30_caps, 20
sim30_mcaps, 21
simulated3o, 20, 21
simulated3@_sub, 27, 22
simulated90, 22

23

:dist, 12
:hclust(), 14

::tibble, 7, 21

	autoplot.caps
	autoplot.mcaps
	caps
	compare_caps
	diagnostic_plot
	fdadbscan
	fdadist
	fdahclust
	fdakmeans
	plot.caps
	plot.mcaps
	sim30_caps
	sim30_mcaps
	simulated30
	simulated30_sub
	simulated90
	Index

