\documentclass[11pt]{amsart} \newtheorem*{theorem}{Theorem} \newtheorem*{corollary}{Corollary} \theoremstyle{definition} \newtheorem*{remark}{Remark} \begin{document} \setlength{\unitlength}{0.01in} \linethickness{0.01in} \begin{center} \begin{picture}(474,66)(0,0) \multiput(0,66)(1,0){40}{\line(0,-1){24}} \multiput(43,65)(1,-1){24}{\line(0,-1){40}} \multiput(1,39)(1,-1){40}{\line(1,0){24}} \multiput(70,2)(1,1){24}{\line(0,1){40}} \multiput(72,0)(1,1){24}{\line(1,0){40}} \multiput(97,66)(1,0){40}{\line(0,-1){40}} \put(143,66){\makebox(0,0)[tl]{\footnotesize Proceedings of the Ninth Prague Topological Symposium}} \put(143,50){\makebox(0,0)[tl]{\footnotesize Contributed papers from the symposium held in}} \put(143,34){\makebox(0,0)[tl]{\footnotesize Prague, Czech Republic, August 19--25, 2001}} \end{picture} \end{center} \vspace{0.25in} \setcounter{page}{91} \title{Transfinite sequences of continuous and Baire~1 functions on separable metric spaces} \author{M\'arton Elekes} \address{Department of Analysis, E\"otv\"os Lor\'and University\\ Budapest, P\'azm\'any P\'eter s\'et\'any 1/c, 1117, Hungary} \email{emarci@cs.elte.hu} \subjclass[2000]{26A21} \keywords{Baire 1 function, well-ordered sequence, metric spaces} \thanks{This is a research announcement. A complete article, written jointly with Kenneth Kunen, will be published elsewhere} \thanks{M\'arton Elekes, {\em Transfinite sequences of continuous and Baire 1 functions on separable metric spaces}, Proceedings of the Ninth Prague Topological Symposium, (Prague, 2001), pp.~91--92, Topology Atlas, Toronto, 2002; {\tt arXiv:math.GN/0204124}} \begin{abstract} We investigate the existence of well-ordered sequences of Baire 1 functions on separable metric spaces. \end{abstract} \maketitle Any set $\mathcal{F}$ of real valued functions defined on an arbitrary set $X$ is partially ordered by the pointwise order, that is $f\leq g$ iff $f(x)\leq g(x)$ for all $x\in X$. In other words put $f