\documentstyle[12pt,amsfonts,amssymb,amsbsy]{book} \raggedbottom \textheight=225mm \textwidth=140mm \topmargin=0cm \oddsidemargin=0cm \evensidemargin=0cm \def\theequation{\arabic{equation}} \setcounter{equation}{0} \begin{document} \setcounter{page}{13} \begin{center} \vspace*{0.2cm} EXTRACT FROM LECTURES \vspace*{0.4cm} {VARIATIONAL FORMULATION FOR REFINED THEORIES, GENERALIZED HELLINGER-REISSNER VARIATIONAL PRINCIPLE} \vspace*{0.3cm} {\it T. Vashakmadze} \vspace*{0.3cm} {\it I. Javakhishvili Tbilisi State University} \end{center} \vspace*{0.3cm} \par The variational formulation for construction of refined theories has (see Chien Wei-zang [2], Ciarlet [3], Hellinger [4], Lukasievicz [5], Reissner [8], Washizu [11]) very important meaning. There are also given historical notes, commentaries, comparisions of different theories with richest bibliography. As follow from these works, variational formulation has also other convenient properties (see e.g. [11], part A), but I call readers attention to following well-known destinguishing f\'{e}atures such as the possibility of investigation and approximate solution of initial boundary value problems in most general Sobolev spaces. \par For simplicity and definiteness we consider linear theory of elasticity, when $\Omega_h$ is isotropic homogeneous elastic media with constant \index{constant!- elastic} thickness. But the consideration of more general cases (such as, anisotropy and non-linearity) doesn't represent any difficulties. \par Let the boundary conditions \index{boundary!- conditions} \index{conditions!- boundary} be such: \par \begin{equation} u\big|_{S_1}=\sigma_n\big|_{S_2}=0, \ \ \ \ S_1\cup S_2=S, \ \ \ \sigma_3\big|_{S^\pm}=g^\pm . \end{equation} \par Here and below are used notations of Vashakmadze [9]. \par Following Mikhlin [6], let us consider the following functional: \par \begin{equation} \Phi[u]=\int\limits_{\Omega_h}(\frac{1}{2}\sigma e+uf)dv-\int\limits_{ S^+} u\sigma_n ds-\int\limits_{ S^-}u\sigma_n ds, \end{equation} where $n$ is outward normal. \par If we use the third equality of Hooke's law, we have $$ \begin{array}{l} \displaystyle \Phi[u]=\frac{1}{2}\int\limits_{\Omega_h}\left[((\lambda^*+2\mu)u_{\alpha,\alpha}+ \lambda^* u_{3-\alpha},{3-\alpha})u_{\alpha,\alpha}+\mu(u_{1,2}+u_{2,1})^2+ \right. \\ \\ [-0.2cm] \\ \displaystyle \left. +\sigma_{\alpha,3}(u_{\alpha,3}+u_{3,\alpha})+ \frac{\lambda}{\lambda+2\mu}\sigma_{33}u_{\alpha,\alpha}+\sigma_{33}u_{3,3}\right]dv+\int\limits_{\Omega_h}ufdv- \int\limits_{S^\pm}u\sigma_nds. \end{array} $$ \par Assuming (see e.g. Berdichevski [1]): \begin{equation} u_i(x_1,x_2,t)=v_i(x_1,x_2)+tw_i(x_1,x_2)+r_i[u], \end{equation} %\nopagebreak[3] for $\Phi[u]$ immediately follows: \begin{equation} \begin{array}{l} \displaystyle \Phi[u]=\frac{1}{2}\int\limits_D\left[(\lambda^*+2\mu)[2hv_{\alpha,\alpha}^2+ \frac{2h^3}{3}w_{\alpha,\alpha}]+\lambda^*\left[2hv_{\alpha,\alpha} v_{3-\alpha,3-\alpha}+ \right.\right. \\ \\ [-0.2cm] \displaystyle \left. +\frac{2h^3}{3}w_{\alpha,\alpha}w_{3-\alpha,3-\alpha}\right]+ \mu\left(2hv_{\alpha,3-\alpha}^2+\frac{2h^3}{3}w_{\alpha,3-\alpha}^2\right)+\\ \\ [-0.2cm] \displaystyle +(v_{3,\alpha}+w_\alpha)\int\limits_{-h}^h\sigma_{\alpha,3}dt+ w_{3,\alpha}\int\limits_{-h}^ht\sigma_{\alpha,3}dt+ \frac{\lambda}{\lambda+2\mu}\left(v_{\alpha,\alpha}\int\limits_{-h}^h\sigma_{3,3}dt+ \right.\\ \end{array} \end{equation} $$ \begin{array}{l} \\ [-0.2cm] \displaystyle \left.\left.+w_{\alpha,\alpha}\int\limits_{-h}^ht\sigma_{3,3}dt\right)+ w_3\int\limits_{-h}^h\sigma_{3,3}dt\right]dw+ \int\limits_D\left[v_i\int\limits_{-h}^hf_idt+ \right. \end{array} $$ $$ \begin{array}{l} \\ [-0.2cm] \displaystyle \left.+w_i\int\limits_{-h}^htf_idt\right]dw- \int\limits_{S^\pm}(v_i\pm hw_i)\sigma_{3n} ds+R[u], \end{array} $$ \par where $r_{ij}[u]$ is defined from (3) evidently and $$ R[u]=\int\limits_{\Omega_h}(\frac{1}{2}\sigma_{ij}r_{ij}[u]+f_ir_i[u])dv- \int\limits_{S^\pm} \sigma_{3n} r_i[u]ds. $$ \par Now let us consider the difference \begin{equation} \Phi[v,w]=\Phi[u]-R[u]. \end{equation} \par This expression will be called {\bf Hellinger-Reissner generalized two-dimensional functional.} Euler-Lagrange conditions give us the following two-dimensional \index{dimensional} system of partial differential equations: \begin{equation} \begin{array}{l} \displaystyle 2h[\mu \Delta v_\alpha+(\lambda^*+\mu)\partial_\alpha(v_{\alpha,\alpha}+ v_{3-\alpha,3-\alpha})]+\frac{\lambda}{2(\lambda+2\mu)}\int\limits_{-h}^{h} \sigma_{33,\alpha}dt= \\ \\ [-0.2cm] \displaystyle =\int\limits_{-h}^{h}f_\alpha dt-(g_\alpha^+-g_\alpha^-),\;\;\; \alpha=1,2,\\ \\ [-0.2cm] \displaystyle \frac{1}{2}\int\limits_{-h}^{h}\sigma_{\alpha 3,\alpha}dt= \int\limits_{-h}^{h}f_3dt-(g_3^+-g_3^-),\\ \\ [-0.2cm] \displaystyle \frac{2h^3}{3}[\mu \Delta w_\alpha+(\lambda^*+\mu)\partial_\alpha (w_{\alpha,\alpha}+w_{3-\alpha,3-\alpha})]- \frac{1}{2}\int\limits_{-h}^{h}\sigma_{\alpha 3}dt+ \\ \\ [-0.2cm] \displaystyle +\frac{\lambda}{2(\lambda+2\mu)}\int\limits_{-h}^{h}t\sigma_{33,\alpha}dt= \int\limits_{-h}^{h}tf_\alpha dt-h(g_\alpha^++g_\alpha^-),\;\;\;\alpha=1,2. \\ \\ [-0.2cm] \displaystyle \frac{2h^3}{3} \Delta w_3-\frac{1}{2}\int\limits_{-h}^{h}\sigma_{33}dt= \int\limits_{-h}^{h}tf_3 dt-h(g_3^++g_3^-). \end{array} \end{equation} \par If now we use formulae of type (2.15) and (2.16) (see [9]), assume also $w_3\equiv 0$, from (5) follows parametrical representation of refined theories full identical to $(P_h)$ schemes (see [9]). \par Thus, the following conclusions are true. \par {\bf The functional $\Phi[u]-R[u]$ corresponds to the refined theories (in wide sense) and scheme $(P_h)$ for this functional represents Euler's equations.} \par In particular, from (6$_{3-5}$) equations follow: \begin{equation} \begin{array}{l}\displaystyle \frac{2h^3}{3}[\mu \Delta w_\alpha+(\lambda^*+\mu)grad div w_+]- \frac{\mu h}{(1+2\gamma)}(w_\alpha+v_{3,\alpha})= \\ [-0.2cm] \displaystyle =\int\limits_{-h}^{h}tf_\alpha dt-h(g_\alpha^++g_\alpha^-)- \frac{\lambda}{2(\lambda+2\mu)}\int\limits_{-h}^{h}t\sigma_{33,\alpha}dt= F_\alpha, \\ \\ [-0.2cm] \displaystyle \frac{\mu h}{(1+2\gamma}[\Delta v_3+w_{\alpha,\alpha}]= \int\limits_{-h}^{h}f_3 dt-(g_3^++g_3^-)=F_3. \end{array} \end{equation} \par This system, of course, gives (see e.g. [8]) when $\gamma= 0,1$, Mindlin's theory [7] for $ \displaystyle \gamma=\frac{12-\pi^2}{2\pi^2}$, for theory of [11] - Vekua [10] $\gamma=0$ (compare with [11], ch.8, \S 8.8. or [5], ch.2, section 2.1; here it's discussed physical aspects of such differences). \par The form of system of differential equations of refined theories for anisotropic case, as follows from [9], with respect to averaged deflection \index{deflection} \index{averaged!- deflection} $v_3$ and components of normals rotation $w_\alpha$ is such: $$ \begin{array}{l} \displaystyle \frac{2h^3}{3}\left[(c_{1\alpha}\partial_1+c_{\alpha 6}\partial_2)w_{1,\alpha}+ (c_{\alpha 6}\partial_1+c_{26}\partial_2)w_{2,\alpha}+(2c_{16}\partial_1+ c_{66}\partial_2)w_{1,3-\alpha}+ \right.\\ \\ [-0.2cm] \displaystyle \left. +(c_{66}\partial_1+2c_{26}\partial_2)w_{2,3-\alpha}\right]- \frac{h}{(1+2\gamma)\delta}\left[a_{3+\alpha,3+\alpha}(w_\alpha+ v_{3,\alpha})- \right.\\ \\ [-0.2cm] \displaystyle \left. -a_{3+\alpha,6-\alpha}(w_{3-\alpha}+v_{3,3-\alpha})\right]=F_\alpha, \end{array} $$ $$ \frac{h}{(1+2\gamma)\delta}\left[(a_{44}\partial_{11}-2a_{45}\partial_{12}+ a_{55}\partial_{22})v_3+(a_{3+\alpha,3+\alpha}\partial_\alpha- a_{3+\alpha,6-\alpha}\partial_{3-\alpha})w_\alpha \right]= F_3. $$ where, $a,\;\;b$ are elasticity and rigidity numbers defined from Hooke's law (about coefficient $c$ see [9]) $ \delta =a_{44}a_{55}-a_{45}^2$. \vspace*{0.8cm} \footnotesize \begin{center} {\bf R e f e r e n c e s} \vspace*{0.3cm} \end{center} \par [1] Berdichevski L., The Approach to the Dynamic Theory of Thin Elastic Plates. {\it MTT. N6, 1973}: 99-109. \par [2] Chien Wei-zang., Variational Principles and Generalized Variational Principles for Nonlinear Elasticity with Finite Displacement. {\it Applied Math. Mech.}, {\bf 9}(1), 1988. \par [3] Ciarlet Ph., {\it Mathematical Elasticity:} V.II, Theory of Plates. Elsevier. Amst.-Lond.-N.-Y., 1997. \par [4], Hellinger E., Die Allgemeine Ansatze der Mechanik der Kontnua. Leipzig: {\it Encyclop\"{a}die der Mathematishen Wissenschaften, v.IV/4, 1914}: 602-694. \par [5] Lukasiewicz S.,{\it Local Loads in Plates and Shells.} Warszawa, Leyden: Noordhoff Inter. Publishing, 1979. \par [6] Mikhlin S., {\it Variational Methods in Mathematical Physics.} M.: Nauka, 1970. \par [7] Mindlin R., Influence of Rotatory Inertia and Shear on Flexsual Motions of Izotropic Elastic Plate.{\it J.Appl.Mech.} {\bf 18} 1951: 31-38. \par [8] Reissner E., On a Variational Theorem of Elasticity. {\it J. Math. Phys.} {\bf 29}, 1950: 90-95. \par [9] Vashakmadze T., {\it Some Problems of Mathematical Theory of Anisotropic elastic plates.} Tbilisi University Press, 1986. \par [10] Vekua I., {\it Shell Theory: General Methods of Construction.} Pitman Advance Publ. Prog. B.-L.-M, 1985. \par [11] Washizu K., {\it Variational Methods in Elasticity and Plasticity.} Pergamon Press. Oxford, 1970. \end{document} .