\documentstyle[12pt,amsfonts,amssymb,amsbsy]{book} \raggedbottom \textheight=225mm \textwidth=140mm \topmargin=0cm \oddsidemargin=0cm \evensidemargin=0cm \def\theequation{\arabic{equation}} \setcounter{equation}{0} \begin{document} \setcounter{page}{26} \begin{center} ON A CONVERGENCE OF AN APPROXIMATE SOLUTION FOR A SOLID-FLUID MODEL \vspace*{0.2cm} {\it G. Chichua} \vspace*{0.2cm} {\it I.Vekua Institute of Applied Mathematics} \end{center} \vspace*{0.15cm} \par This paper deals with the study of the approximation scheme for a boundary-contacts problem with unilateral contact conditions for the body containing parts of elastic solid and viscous fluid (see [1], [2]). \par Let vector $h=(h_1,h_2,h_3)\in {\Bbb R}^3$. We define the mesh $R_h$ (see [3])by \begin{equation} R_h=\{M\vert M\in {\Bbb R}^3,\;\; M=(m_1h_1,m_2h_2,m_3h_3),\;\;m_i\in Z\}. \end{equation} \par To any node $M$ of the mesh $R_h$ we correspond a "bar" with the center $M$: $$ \omega^0_h(M)={\mathop\prod\limits_{i=1}^3}](m_i-\frac{1}{2})h_i, (m_i+\frac{1}{2})h_i[ $$ and a "christ" with the center $M$: $$ \omega^1_h(M)={\mathop\cup\limits_{i=1}^3} \omega^0_h(M\pm \frac{h}{2}e_i), $$ where $e_i,\;\;i=1,2,3$ are unit basis vectors in ${\Bbb R}^3$ \par Let $A=\{M\in R_h\vert dist(M,\sum)<\frac{1}{2}\sqrt{h_1^2+h_2^2+h_3^2}\}$. If $M\in A$, then we introduce $(\omega^0_h(M))'=\omega^0_h(M)\cap\Omega_s$ and $(\omega^0_h(M))''=\omega^0_h(M)\cup\Omega_f$. \par Now we define $\Omega_h=\{M\vert \omega^1_h(M)\subset\Omega\}$ and $v_h$ which is the space streched on $\theta_h^M,\; (\theta_h^M)',\;(\theta_h^M)'',\;\;M\in\Omega_h$, where the last three symbols are characteristic functions respectively for $\omega^0_h(M)$, when $dist(M,\sum)\ge\frac{1}{2}\sqrt{h_1^2+h_2^2+h_3^2}$ and $(\omega^0_h(M))'$ and $(\omega^0_h(M))''$. \par We assume that \begin{equation} K_h=\left\{v_h\vert v_h\in V_h:(v_h,(\theta_h^M)')-(v_h,(\theta_h^M)'')\ge 0\;\; {\rm a.e.\;\;on}\sum\right\} \end{equation} \par The following scheme of approximation has been built: find $ u^2,u^3,...u^n $, such, that \begin{equation} (\rho\gamma^i,v-d^i)+a(u^{i+1},v-d^i)+b(d^i,v-d^i)\ge (f^i,v-d^i),\;(i\ge 1) \end{equation} \begin{equation} \begin{array}{c} \forall v\in K_h,\;\; d^i\in K_h, \\ u ^0=u^1=0, \end{array} \end{equation} where we use the following notations (we do not write $ h $ index): \begin{equation} \delta^i=\frac{u^{i+1}-u^i}{k}, \end{equation} \begin{equation} d^i=\frac{u^{i+1}-u^{i-1}}{2k}=\frac{\delta^{i}+\delta^{i-1}}{2}, \end{equation} \begin{equation} \gamma^i=\frac{\delta^{i}-\delta^{i-1}}{k}= \frac{u^{i+1}-2u^i+u^{i-1}}{k^2}= 2\left(\frac{d^i-\delta^{i-1}}{k}\right), \end{equation} \begin{equation} g^i=\frac{f^{i+1}-f^i}{k}. \end{equation} \par Taking into account these notations, we can rewrite the inequality (3) in the following way $$ (\rho d^i,v-d^i)-(\rho\delta^{i-1},v-d^i)+ k^2a(d^i,v-d^i)+\frac{k}{2}a(u^i-k\delta^{i-1},v-d^i)+ $$ \begin{equation} +\frac{k}{2}b(d^i,v-d^i)-\frac{k}{2}(f^i,v-d^i)\ge 0. \end{equation} \par The problem (9), (4) can be reduced to the problem of minimization of the following functional: \begin{equation} J(d^i)=\frac{1}{2}\alpha\vert d^i\vert^2+\frac{1}{2}k^2a(d^i,d^i)+ \frac{k}{4}b(d^i,d^i)+(\tilde{f_i},d^i),\;\;d_i\in K_h, \end{equation} \par \begin{equation} where\;(\tilde{f_i},d^i)=-(\rho\delta^{i-1},d^i)+ \frac{k}{2}a(u^i-k\delta^{i-1},d^i)-(f^i,d^i), \end{equation} \begin{equation} u^{i+1}=u^i+kd^i \end{equation} Let $ P_k:V_h\to K_h $ be a mapping defined as follows: $$ P_k(v_h)= \cases{v_h\;\;if\;\;(v_{h},(\theta_h^M)'')- (v_{h},(\theta_h^M)')\ge 0,\;\;\forall M\in A, \cr v_h\;\;if\;\;(v_{h},(\theta_h^M)'')-(v_{h},(\theta_h^M)') < 0,\;\;\forall M\in A,}\;\;v_h\in V_h, $$ where $ (v^1_{h},\theta_h^M)= (v_{h},\theta_h^M) $ if $M\in\Omega_h\backslash A$, and $ (v^1_h,(\theta_h^M)')= (v_h^1,(\theta_h^M)'')=(v_h,\theta_h^M)'$ if $ M\in A $. \par {\bf Theorem.} {\it Let $$ d^0\in K_h ,\; d^{n+1}=P_k(d^n-\rho_nJ'(d^n)), \eqno{(13)}$$ where $ \rho_n $ are numbers.} \par We can choose the numbers $ \rho_0 $ and $ \rho_1 $ such, that if $ 0<\rho_0\le\rho_n\le\rho_1 $, than the process of iteration (13) converges to the solution of the minimization problem (10). \newpage \footnotesize \begin{center} {\bf R e f e r e n c e s} \vspace*{0.2cm} \end{center} \par [1] G. Chichua. On a Boundary-contact Problem for a Solid-Fluid Model. Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics, 1995, v. 10, $N^{_{\underline 0}}$1, p. 18-20. [2] G. Chichua. Mixture of Elastic Solid and Viscous Fluid. Tbilisi International Centre of Mathematics and Informatics, 1997, v.1. [3] Sanches-Palencia E. Non-Homogenous Media and Vibration Theory. Springer-Verlag, 1980. \end{document} .