%------------------------------------------------------------------------------ % Here please write the date of submission of paper or its revisions: %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref} \hypersetup{colorlinks=true,linkcolor=red, anchorcolor=green, citecolor=cyan, urlcolor=red, filecolor=magenta, pdftoolbar=true} %\usepackage{draftwatermark} \usepackage{lineno} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{summary}[theorem]{Summary} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \usepackage{amscd} %\SetWatermarkText{Galley Proof}\SetWatermarkScale{4} \begin{document} %\linenumbers \setcounter{page}{62} \begin{center}{\footnotesize Khayyam J. Math. 1 (2015), no. 1, 62--70}\\\end{center} \noindent\parbox{2.85cm}{\includegraphics*[keepaspectratio=true,scale=0.24]{KJM.jpg}} \vspace{0.5cm} \title[Hermite-Hadamard type inequalities via fractional integrals] {Hermite-Hadamard type inequalities for mappings whose derivatives are $s-$% convex in the second sense via fractional integrals} \author[E. SET, M. Em\.{I}n \"{O}ZDEM\.{I}R, M. Zek\.{I} Sar\i kaya, F\.{I}l\.{I}z KARAKO\c{C}] {Erhan SET$^{1*}$, M. Em\.{I}n \"{O}ZDEM\.{I}R$^2$, M. Zek\.{I} Sar\i kaya$^3$ and F\.{I}l\.{I}z KARAKO\c{C}$^4$} \address{$^{1}$ Department of Mathematics, \ Faculty of Science and Arts, Ordu University, Ordu, Turkey} \email{erhanset@yahoo.com} \address{$^{2}$ Atat\"{u}rk University, K.K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey} \email{emos@atauni.edu.tr} \address{$^{3}$ Department of Mathematics, \ Faculty of Science and Arts, D\"{u}zce University, D\"{u}zce, Turkey} \email{sarikayamz@gmail.com} \address{$^{4}$ Department of Mathematics, \ Faculty of Science and Arts, D\"{u}zce University, D\"{u}zce, Turkey} \email{filinz\_41@hotmail.com} \dedicatory{{\rm Communicated by S. Hejazian}} \subjclass[2010]{Primary 26A33; Secondary 26A51, 26D07, 26D10.} \keywords{Hermite-Hadamard type inequality, $s-$convex function, \ Riemann-Liouville fractional integral.} \date{Received: 24 June 2014; Accepted: 17 October 2014. \newline \indent $^{*}$ Corresponding author} \begin{abstract} In this paper we establish Hermite-Hadamard type inequalities for mappings whose derivatives are $s-$convex in the second sense and concave. \end{abstract} \maketitle %*********************************************************************************** \section{Introduction} Let $f:I\subseteq %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion \rightarrow %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion $ be a convex function defined on the interval $I$ of real numbers and $% a,b\in I$ with $a0$ holds:% \begin{eqnarray} &&\left\vert \frac{f(a)+f(b)}{2}-\frac{\Gamma \left( \alpha +1\right) }{% 2\left( b-a\right) ^{\alpha }}\left[ J_{a^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a)\right] \right\vert \label{1.3} \\ &\leq & \frac{\alpha(b-a)^2}{2(\alpha+1)(\alpha+2)}\left[\frac{|f''(a)|+|f''(b)|}{2}\right] \nonumber\\ &\leq &\frac{\left( b-a\right) ^{2}}{\alpha +1}\beta \left( 2,\alpha +1\right) \left[ \frac{\left\vert f^{\prime \prime }(a)\right\vert +\left\vert f^{\prime \prime }(b)\right\vert }{2}\right] \notag \end{eqnarray}% where $\beta $ is Euler Beta function. \end{theorem} \begin{theorem} \label{13} Let $f:I\subseteq %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion \rightarrow %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion $ be a twice differentiable function on $I^{\circ }$. Assume that $p\in %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion ,p>1$ such that $\left\vert f^{\prime \prime }\right\vert ^{\frac{p}{p-1}}$ is convex function on $I$. Suppose that $a,b\in I^{\circ }$ with $a1$ with $q=\frac{p}{p-1}$ such that $\left\vert f^{\prime \prime }\right\vert ^{q}$ is concave function on $I.$ Suppose that $a,b\in I^{\circ } $ with $a0$ with $a\geq 0$ are defined by \end{definition} \begin{equation*} J_{a^{+}}^{\alpha }f(x)=\frac{1}{\Gamma (\alpha )}\int_{a}^{x}(x-t)^{\alpha -1}f(t)dt,\;\;x>a \end{equation*}% and \begin{equation*} J_{b^{-}}^{\alpha }f(x)=\frac{1}{\Gamma (\alpha )}\int_{x}^{b}(t-x)^{\alpha -1}f(t)dt,\;\;x0$ holds: \end{lemma} \begin{eqnarray} &&\frac{f(a)+f(b)}{2}-\frac{\Gamma \left( \alpha +1\right) }{2\left( b-a\right) ^{\alpha }}\left[ J_{a^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a)% \right] \label{2.1} \\ &=&\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }% \int_{0}^{1}t\left( 1-t^{\alpha }\right) \left[ f^{\prime \prime }\left( ta+\left( 1-t\right) b\right) +f^{\prime \prime }\left( \left( 1-t\right) a+tb\right) \right] dt \notag \end{eqnarray}% where $\Gamma (\alpha )=\int_{0}^{\infty }e^{-u}u^{\alpha -1}du.$ \begin{theorem} \label{16} Let $f:I\subseteq \lbrack 0,\infty )\rightarrow %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion $ be a twice differentiable function on $I^{\circ }$ and let $a,b\in I^{\circ }$ with $a0$ holds: \end{theorem} \begin{eqnarray} &&\left\vert \frac{f(a)+f(b)}{2}-\frac{\Gamma \left( \alpha +1\right) }{% 2\left( b-a\right) ^{\alpha }}\left[ J_{a^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a)\right] \right\vert \label{2.2} \\ &\leq &\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }\left[ \frac{% \alpha }{\left( s+2\right) \left( \alpha +s+2\right) }+\beta \left( 2,s+1\right) -\beta \left( \alpha +2,s+1\right) \right] \notag \\ &&\times \left[ \left\vert f^{\prime \prime }(a)\right\vert +\left\vert f^{\prime \prime }(b)\right\vert \right] \notag \end{eqnarray}% where $\beta $ is Euler Beta function. \begin{proof} From Lemma \ref{L1} since $\left\vert f^{\prime \prime }\right\vert $ is $s-$% convex in the second sense on $I$, we have \begin{eqnarray*} &&\left\vert \frac{f(a)+f(b)}{2}-\frac{\Gamma \left( \alpha +1\right) }{% 2\left( b-a\right) ^{\alpha }}\left[ J_{a^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a)\right] \right\vert \\ &\leq &\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }% \int_{0}^{1}\left\vert t\left( 1-t^{\alpha }\right) \right\vert \left[ \left\vert f^{\prime \prime }\left( ta+\left( 1-t\right) b\right) \right\vert +\left\vert f^{\prime \prime }\left( \left( 1-t\right) a+tb\right) \right\vert \right] dt \\ &\leq &\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }\left[ \int_{0}^{1}t(1-t^{\alpha })\left[ t^{s}\left\vert f^{\prime \prime }(a)\right\vert +(1-t)^{s}\left\vert f^{\prime \prime }(b)\right\vert \right] dt\right. \\ &&\left. +\int_{0}^{1}t(1-t^{\alpha })\left[ (1-t)^{s}\left\vert f^{\prime \prime }(a)\right\vert +t^{s}\left\vert f^{\prime \prime }(b)\right\vert % \right] dt\right] \\ &=&\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }\left[ \int_{0}^{1}t^{s+1}\left( 1-t^{\alpha }\right) dt+\int_{0}^{1}t(1-t^{\alpha })(1-t)^{s}dt\right] \left[ \left\vert f^{\prime \prime }(a)\right\vert +\left\vert f^{\prime \prime }(b)\right\vert \right] \\ &=&\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }\left[ \frac{% \alpha }{\left( s+2\right) \left( \alpha +s+2\right) }+\beta \left( 2,s+1\right) -\beta \left( \alpha +2,s+1\right) \right] \\ &&\times \left[ \left\vert f^{\prime \prime }(a)\right\vert +\left\vert f^{\prime \prime }(b)\right\vert \right] \end{eqnarray*}% where we used the fact that% \begin{equation*} \int_{0}^{1}t^{s+1}\left( 1-t^{\alpha }\right) dt=\frac{\alpha }{\left( s+2\right) \left( \alpha +s+2\right) } \end{equation*}% and% \begin{equation*} \int_{0}^{1}t(1-t^{\alpha })(1-t)^{s}dt=\beta \left( 2,s+1\right) -\beta \left( \alpha +2,s+1\right) \end{equation*}% which completes the proof. \end{proof} \begin{remark} \label{R1} In Theorem \ref{16} if we choose $s=1$ then (\ref{2.2}) reduces the inequality (\ref{1.3}) of Theorem \ref{12}. \end{remark} \begin{theorem} \label{17} Let $f:I\subseteq \lbrack 0,\infty )\rightarrow\mathbb{R}$ be a twice differentiable function on $I^{\circ }$. Suppose that $a,b\in I^{\circ }$ with $a1$, then the following inequality for fractional integrals with $\alpha\in(0,1]$ holds: \end{theorem} \begin{eqnarray} &&\left\vert \frac{f(a)+f(b)}{2}-\frac{\Gamma \left( \alpha +1\right) }{% 2\left( b-a\right) ^{\alpha }}\left[ J_{a^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a)\right] \right\vert \label{2.3} \\ &\leq &\frac{\left( b-a\right) ^{2}}{\alpha +1}\beta ^{\frac{1}{p}}\left( p+1,\alpha p+1\right) \left[ \frac{\left\vert f^{\prime \prime }(a)\right\vert ^{q}+\left\vert f^{\prime \prime }(b)\right\vert ^{q}}{s+1}% \right] ^{\frac{1}{q}} \notag \end{eqnarray} where $\beta $ is Euler Beta function and $\frac{1}{p}+\frac{1}{q}=1$. \begin{proof} From Lemma \ref{L1}, using the well known H\"{o}lder inequality and $% \left\vert f^{\prime \prime }\right\vert ^{q}$ is $s-$convex in the second sense on $I$, we have% \begin{eqnarray*} &&\left\vert \frac{f(a)+f(b)}{2}-\frac{\Gamma \left( \alpha +1\right) }{% 2\left( b-a\right) ^{\alpha }}\left[ J_{a^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a)\right] \right\vert \\ &\leq &\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }% \int_{0}^{1}\left\vert t\left( 1-t^{\alpha }\right) \right\vert \left[ \left\vert f^{\prime \prime }\left( ta+\left( 1-t\right) b\right) \right\vert +\left\vert f^{\prime \prime }\left( \left( 1-t\right) a+tb\right) \right\vert \right] dt \\ &\leq &\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }\left( \int_{0}^{1}t^{p}\left( 1-t^{\alpha }\right) ^{p}dt\right) ^{\frac{1}{p}} \\ &&\times \left[ \left( \int_{0}^{1}\left\vert f^{\prime \prime }(ta+(1-t)b)\right\vert ^{q}dt\right) ^{\frac{1}{q}}+\left( \int_{0}^{1}\left\vert f^{\prime \prime }((1-t)a+tb)\right\vert ^{q}dt\right) ^{\frac{1}{q}}\right] \\ &\leq &\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }\left( \int_{0}^{1}t^{p}\left( 1-t^{\alpha }\right) ^{p}dt\right) ^{\frac{1}{p}} \\ &&\times \left[ \begin{array}{c} \left( \int_{0}^{1}\left( t^{s}\left\vert f^{\prime \prime }(a)\right\vert ^{q}+(1-t\right) ^{s}\left\vert f^{\prime \prime }(b)\right\vert ^{q})dt\right) ^{\frac{1}{q}} \\ +\left( \int_{0}^{1}\left( (1-t)^{s}\left\vert f^{\prime \prime }(a)\right\vert ^{q}+t^{s}\left\vert f^{\prime \prime }(b)\right\vert ^{q}\right) dt\right) ^{\frac{1}{q}}% \end{array}% \right] \\ &=&\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }\left( \int_{0}^{1}t^{p}\left( 1-t^{\alpha }\right) ^{p}dt\right) ^{\frac{1}{p}}% \left[ \begin{array}{c} \left( \left\vert f^{\prime \prime }(a)\right\vert ^{q}\frac{1}{s+1}% +\left\vert f^{\prime \prime }(b)\right\vert ^{q}\frac{1}{s+1}\right) ^{% \frac{1}{q}} \\ +\left( \left\vert f^{\prime \prime }(a)\right\vert ^{q}\frac{1}{s+1}% +\left\vert f^{\prime \prime }(b)\right\vert ^{q}\frac{1}{s+1}\right) ^{% \frac{1}{q}}% \end{array}% \right] \\ &\leq &\frac{\left( b-a\right) ^{2}}{\alpha +1}\beta ^{\frac{1}{p}}\left( p+1,\alpha p+1\right) \left[ \frac{\left\vert f^{\prime \prime }(a)\right\vert ^{q}+\left\vert f^{\prime \prime }(b)\right\vert ^{q}}{s+1}% \right] ^{\frac{1}{q}} \end{eqnarray*}% where we used the fact that% \begin{equation*} \int_{0}^{1}t^{s}dt=\int_{0}^{1}(1-t)^{s}dt=\frac{1}{s+1} \end{equation*}% and% \begin{equation*} \int_{0}^{1}t^{p}\left( 1-t^{\alpha }\right) ^{p}dt\leq \int_{0}^{1}t^{p}(1-t)^{\alpha p}dt=\beta\left( p+1,\alpha p+1\right) \end{equation*}% which completes the proof. \end{proof} \begin{remark} \label{R2} In Theorem \ref{17} if we choose $s=1$ then (\ref{2.3}) reduces the inequality (\ref{1.4}) of Theorem \ref{13}. \end{remark} \begin{theorem} \label{18} Let $f:I\subseteq \lbrack 0,\infty )\rightarrow %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion $ be a twice differentiable function on $I^{\circ }.$ Suppose that $a,b\in I^{\circ }$ with $a0$ holds:% \begin{eqnarray} &&\left\vert \frac{f(a)+f(b)}{2}-\frac{\Gamma \left( \alpha +1\right) }{% 2\left( b-a\right) ^{\alpha }}\left[ J_{a^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a)\right] \right\vert \label{2.4} \\ &\leq &\frac{\alpha \left( b-a\right) ^{2}}{4\left( \alpha +1\right) \left( \alpha +2\right) } \notag \\ &&\times \left[ \left( \left\vert f^{\prime \prime }(a)\right\vert ^{q}% \tfrac{2\alpha +4}{\left( s+2\right) \left( \alpha +s+2\right) }+\left\vert f^{\prime \prime }(b)\right\vert ^{q}\tfrac{\left[ \beta \left( 2,s+1\right) -\beta \left( \alpha +2,s+1\right) \right] \left( 2\alpha +4\right) }{\alpha }\right) ^{\frac{1}{q}}\right. \notag \\ &&\left. +\left( \left\vert f^{\prime \prime }(a)\right\vert ^{q}\tfrac{% \left[ \beta \left( 2,s+1\right) -\beta \left( \alpha +2,s+1\right) \right] \left( 2\alpha +4\right) }{\alpha }+\left\vert f^{\prime \prime }(b)\right\vert ^{q}\tfrac{2\alpha +4}{\left( s+2\right) \left( \alpha +s+2\right) }\right) ^{\frac{1}{q}}\right]. \notag \end{eqnarray} \end{theorem} \begin{proof} From Lemma \ref{L1}, using power mean inequality and $\left\vert f^{\prime \prime }\right\vert ^{q}$ is $s-$convex in the second sense on $I$ we have \begin{eqnarray*} &&\left\vert \frac{f(a)+f(b)}{2}-\frac{\Gamma \left( \alpha +1\right) }{% 2\left( b-a\right) ^{\alpha }}\left[ J_{a^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a)\right] \right\vert\\ &\leq &\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }% \int_{0}^{1}\left\vert t\left( 1-t^{\alpha }\right) \right\vert \left[ \left\vert f^{\prime \prime }\left( ta+\left( 1-t\right) b\right) \right\vert +\left\vert f^{\prime \prime }\left( \left( 1-t\right) a+tb\right) \right\vert \right] dt \\ &\leq &\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }\left( \int_{0}^{1}t\left( 1-t^{\alpha }\right) dt\right) ^{1-\frac{1}{q}}\left[ \left( \int_{0}^{1}t(1-t^{\alpha })\left\vert f^{\prime \prime }(ta+(1-t)b)\right\vert ^{q}dt\right) ^{\frac{1}{q}}\right. \\ &&\left. +\left( \int_{0}^{1}t(1-t^{\alpha })\left\vert f^{\prime \prime }((1-t)a+tb)\right\vert ^{q}dt\right) ^{\frac{1}{q}}\right] \\ &\leq &\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }\left( \int_{0}^{1}t\left( 1-t^{\alpha }\right) dt\right) ^{1-\frac{1}{q}} \\ &&\times \left[ \left( \int_{0}^{1}\left[ t^{s+1}\left( 1-t^{\alpha }\right) \left\vert f^{\prime \prime }(a)\right\vert ^{q}+t\left( 1-t^{\alpha }\right) \left( 1-t\right) ^{s}\left\vert f^{\prime \prime }(b)\right\vert ^{q}\right] dt\right) ^{\frac{1}{q}}\right. \\ &&\left. +\left( \int_{0}^{1}t\left( 1-t^{\alpha }\right) \left( 1-t\right) ^{s}\left\vert f^{\prime \prime }(a)\right\vert ^{q}+t^{s+1}\left( 1-t^{\alpha }\right) \left\vert f^{\prime \prime }(b)\right\vert ^{q}dt\right) ^{\frac{1}{q}}\right] \\ &=&\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }\left( \frac{% \alpha }{2\left( \alpha +2\right) }\right) ^{1-\frac{1}{q}} \\ &&\times \left[ \left( \left\vert f^{\prime \prime }(a)\right\vert ^{q}% \tfrac{\alpha }{(s+2)(\alpha +s+2)}+\left\vert f^{\prime \prime }(b)\right\vert ^{q}\left[ \beta \left( 2,s+1\right) -\beta \left( \alpha +2,s+1\right) \right] \right) ^{\frac{1}{q}}\right.\\ &&\left. +\left( \left\vert f^{\prime \prime }(a)\right\vert ^{q}\left[ \beta \left( 2,s+1\right) -\beta \left( \alpha +2,s+1\right) \right] +\left\vert f^{\prime \prime }(b)\right\vert ^{q}\tfrac{\alpha }{% (s+2)(\alpha +s+2)}\right) ^{\frac{1}{q}}\right] \end{eqnarray*} \begin{eqnarray*} &=&\frac{\alpha \left( b-a\right) ^{2}}{4\left( \alpha +1\right) \left( \alpha +2\right) } \\ &&\times \left[ \left( \left\vert f^{\prime \prime }(a)\right\vert ^{q}% \tfrac{\left( 2\alpha +4\right) }{\left( s+2\right) \left( \alpha +s+2\right) }+\left\vert f^{\prime \prime }(b)\right\vert ^{q}\tfrac{\left[ \beta \left( 2,s+1\right) -\beta \left( \alpha +2,s+1\right) \right] \left( 2\alpha +4\right) }{\alpha }\right) ^{\frac{1}{q}}\right. \\ &&\left. +\left( \left\vert f^{\prime \prime }(a)\right\vert ^{q}\tfrac{% \left[ \beta \left( 2,s+1\right) -\beta \left( \alpha +2,s+1\right) \right] \left( 2\alpha +4\right) }{\alpha }+\left\vert f^{\prime \prime }(b)\right\vert ^{q}\tfrac{2\alpha +4}{\left( s+2\right) \left( \alpha +s+2\right) }\right) ^{\frac{1}{q}}\right] \end{eqnarray*}% where we used the fact that \begin{equation*} \int_{0}^{1}t^{s+1}\left( 1-t^{\alpha }\right) dt=\frac{\alpha }{% (s+2)(\alpha +s+2)} \end{equation*}% and% \begin{equation*} \int_{0}^{1}t\left( 1-t^{\alpha }\right) \left( 1-t\right) ^{s}dt=\beta \left( 2,s+1\right) -\beta \left( \alpha +2,s+1\right) \end{equation*}% which completes the proof. \end{proof} \begin{remark} \label{R3} In Theorem \ref{18} if we choose $s=1$ then (\ref{2.4}) reduces the inequality (\ref{1.5}) of Theorem \ref{14}. \end{remark} The following result holds for $s-$concavity. \begin{theorem} \label{19} Let $f:I\subseteq \lbrack 0,\infty )\rightarrow %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion $ be a twice differentiable function on $I^{\circ }.$ Suppose that $a,b\in I^{\circ }$ with $a1$, then the following inequality for fractional integrals with $\alpha\in(0,1]$ holds:% \begin{eqnarray} &&\left\vert \frac{f(a)+f(b)}{2}-\frac{\Gamma \left( \alpha +1\right) }{% 2\left( b-a\right) ^{\alpha }}\left[ J_{a^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a)\right] \right\vert \label{2.5} \\ &\leq &\frac{\left( b-a\right) ^{2}}{\alpha +1}\beta ^{\frac{1}{p}}\left( p+1,\alpha p+1\right) 2^{\frac{s-1}{q}}\left\vert f^{\prime \prime }\left( \frac{a+b}{2}\right) \right\vert \notag \end{eqnarray}% where $\frac{1}{p}+\frac{1}{q}=1$ and $\beta $ is Euler Beta function. \end{theorem} \begin{proof} From Lemma \ref{L1} and using the H\"{o}lder inequality we have \begin{eqnarray} &&\left\vert \frac{f(a)+f(b)}{2}-\frac{\Gamma \left( \alpha +1\right) }{% 2\left( b-a\right) ^{\alpha }}\left[ J_{a^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a)\right] \right\vert \label{2.6} \\ &\leq &\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }% \int_{0}^{1}\left\vert t\left( 1-t^{\alpha }\right) \right\vert \left[ \left\vert f^{\prime \prime }\left( ta+\left( 1-t\right) b\right) \right\vert +\left\vert f^{\prime \prime }\left( \left( 1-t\right) a+tb\right) \right\vert \right] dt \notag \\ &\leq &\frac{\left( b-a\right) ^{2}}{2\left( \alpha +1\right) }\left( \int_{0}^{1}t^{p}\left( 1-t^{\alpha }\right) ^{p}dt\right) ^{\frac{1}{p}} \notag \\ &&\times \left[ \left( \int_{0}^{1}\left\vert f^{\prime \prime }(ta+(1-t)b)\right\vert ^{q}dt\right) ^{\frac{1}{q}}+\left( \int_{0}^{1}\left\vert f^{\prime \prime }((1-t)a+tb)\right\vert ^{q}dt\right) ^{\frac{1}{q}}\right] \nonumber \end{eqnarray}% Since $\left\vert f^{\prime \prime }\right\vert ^{q}$ is $s-$concave using inequality (\ref{1.2}) we get (see \cite{A3})% \begin{equation} \int_{0}^{1}\left\vert f^{\prime \prime }(ta+(1-t)b)\right\vert ^{q}dt\leq 2^{s-1}\left\vert f^{\prime \prime }\left( \frac{a+b}{2}\right) \right\vert ^{q} \label{2.7} \end{equation}% and% \begin{equation} \int_{0}^{1}\left\vert f^{\prime \prime }((1-t)a+tb)\right\vert ^{q}dt\leq 2^{s-1}\left\vert f^{\prime \prime }\left( \frac{b+a}{2}\right) \right\vert ^{q} \label{2.8} \end{equation}% Using (\ref{2.7}) and (\ref{2.8}) in (\ref{2.6}), we have% \begin{eqnarray*} &&\left\vert \frac{f(a)+f(b)}{2}-\frac{\Gamma \left( \alpha +1\right) }{% 2\left( b-a\right) ^{\alpha }}\left[ J_{a^{+}}^{\alpha }f(b)+J_{b^{-}}^{\alpha }f(a)\right] \right\vert \\ &\leq &\frac{\left( b-a\right) ^{2}}{\alpha +1}\beta ^{\frac{1}{p}}\left( p+1,\alpha p+1\right) 2^{\frac{s-1}{q}}\left\vert f^{\prime \prime }\left( \frac{a+b}{2}\right) \right\vert \end{eqnarray*}% which completes the proof. \end{proof} \begin{remark} \label{r4} In Theorem \ref{19} if we choose $s=1$ then (\ref{2.5}) reduces inequality (\ref{1.6}) of Theorem \ref{15}. \end{remark} %%\\ %%\\ %%{\bf Acknowledgement.} Acknowledgements could be placed at the end of the text but precede the references. \bibliographystyle{amsplain} \begin{thebibliography}{99} \bibitem{1} M. Alomari, M. Darus, \textit{On the Hadamard's inequality for log-convex functions on the coordinates}, J. Inequal. Appl. \textbf{2009} (2009), 13. Article ID 283147. \bibitem{A3} M. Alomari, M. Darus, S.S. Dragomir, P. Cerone, \textit{Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense}, Appl. Math. Lett. \textbf{23} (2010), 1071--1076. \bibitem{r1} G. Anastassiou, M.R. Hooshmandasl, A. Ghasemi, F. Moftakharzadeh,\textit{ Montogomery identities for fractional integrals and related fractional inequalities}, J. Ineq. Pure Appl. Math. \textbf{10} (2009), no. 4, Art 97. \bibitem{f1} A.G. Azpeitia,\textit{ Convex functions and the Hadamard inequality}, Revista Colombiana Mat. \textbf{28} (1994), 7--12. \bibitem{f2} M.K. Bakula, M.E. \"{O}zdemir, J. Pe\v{c}ari\'{c}, \textit{Hadamard tpye inequalities for m-convex and ($\alpha $,m)-convex functions}, J. Ineq. Pure Appl. Math. \textbf{9} (2008), no. 4, Art. 96. \bibitem{2} M.K. Bakula, J. Pe\v{c}ari\'{c}, \textit{Note on some Hadamard-type inequalities}, J. Ineq. Pure Appl. Math. \textbf{5} (2004), no. 3, Article 74. \bibitem{r2} S. Belarbi, Z. Dahmani, \textit{On some new fractional integral inequalities}, J. Ineq. Pure Appl. Math. \textbf{10} (2009), no. 3, Art. 86. \bibitem{A1} M.I. Bhatti, M. Iqbal and S.S. Dragomir, \textit{Some new fractional integral Hermite-Hadamard type inequalities}, RGMIA Res. Rep. Coll., \textbf{16} (2013), Article 2. \bibitem{r3} Z. Dahmani, \textit{New inequalities in fractional integrals}, Int. J. Nonlinear Sci. \textbf{9} (2010), no. 4, 493--497. \bibitem{r4} Z. Dahmani, \textit{On Minkowski and Hermite--Hadamard integral inequalities via fractional integration}, Ann. Funct. Anal. \textbf{1} (2010), no. 1, 51--58. \bibitem{r5} Z. Dahmani, L. Tabharit, S. Taf, \textit{Some fractional integral inequalities}, Nonlinear. Sci. Lett. A \textbf{1} (2010), no. 2, 155--160. \bibitem{r6} Z. Dahmani, L. Tabharit, S. Taf,\textit{New generalizations of Gruss inequality using Riemann--Liouville fractional integrals}, Bull. Math. Anal. Appl. \textbf{2 } (2010), no. 3, 93--99. \bibitem{f3} S.S. Dragomir, \textit{On some new inequalities of Hermite--Hadamard type for m-convex functions}, Tamkang J. Math. \textbf{3} (2002), no. 1. \bibitem{4} S.S. Dragomir, R.P. Agarwal, \textit{Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula}, Appl. Math. lett. \textbf{11} (1998), no. 5, 91--95. \bibitem{A2} S.S.Dragomir, S. Fitzpatrik,\textit{The Hadamard's inequality for s-convex functions in the second sense}, Demonstratio Math \textbf{32} (1999), no. 4, 687--696. \bibitem{3} S.S. Dragomir, C.E.M. Pearce, \textit{Selected topics on Hermite--Hadamard inequalities and applications}, RGMIA Monographs, Victoria University, 2000. \bibitem{f4} P.M. Gill, C.E.M. Pearce, J. Pe\v{c}ari\'{c}, \textit{Hadamard's inequality for r-convex functions}, J. Math. Anal. Appl. \textbf{215} (1997), no. 2, 461--470. \bibitem{A4} H. Hudzik, L. Maligranda, \textit{Some remarks on s-convex functions}, Aequationes Math. \textbf{48} (1994), 100--111. \bibitem{f5} U.S. K\i rmac\i , M.K. Bakula, M.E. \"{O}zdemir, J. Pe\v{c}ari% \'{c}, \textit{Hadamard-tpye inequalities for s-convex functions}, Appl. Math. Comput. \textbf{193} (2007), 26--35. \bibitem{5} M.E. \"{O}zdemir, M. Avci, E. Set, \textit{On some inequalities of Hermite--Hadamard type via m-convexity}, Appl. Math. Lett. \textbf{23} (2010), no. 9, 1065--1070. \bibitem{f6} J.E. Pe\v{c}ari\'{c}, F. Proschan, Y.L. Tong, \textit{Convex Functions, Partial Orderings and Statistical Applications}, Academic Press, Boston, 1992. \bibitem{r7} M.Z. Sarikaya, H. Ogunmez, \textit{On new inequalities via Riemann--Liouville fractional integration}, Abstract and Applied Analysis, Volume 2012, Article ID 428983, 10 pages, doi:10.1155/2012/428983. \bibitem{r8} M.Z. Sarikaya and H. Yaldiz, \textit{On weighted Montogomery identities for Riemann-Liouville fractional integrals}, Konuralp Journal of Mathematics, \textbf{1} (2013), no. 1, 48--53. \bibitem{r9} M.Z. Sarikaya, E.Set, H.Yaldiz and N.Basak, \textit{Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities}, Mathematical and Computer Modelling, \textbf{57} (2013), 2403--2407. \bibitem{r10} E. Set, \textit{New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals}, Comp. Math. Appl. \textbf{63} (2012), no. 7, 1147--1154. \bibitem{6} E. Set, M.E. \"{O}zdemir, S.S. Dragomir, \textit{On the Hermite--Hadamard inequality and other integral inequalities involving two functions}, J. Inequal. Appl. (2010), 9. Article ID 148102. \bibitem{7} E. Set, M.E. \"{O}zdemir, S.S. Dragomir, \textit{On Hadamard-type inequalities involving several kinds of convexity}, J. Inequal. Appl. (2010), 12. Article ID 286845. \end{thebibliography} \end{document} %------------------------------------------------------------------------------ % End of journal.tex %------------------------------------------------------------------------------ .