%------------------------------------------------------------------------------ % Here please write the date of submission of paper or its revisions: 31st of July 2014 %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color, mathrsfs} \usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref} \hypersetup{colorlinks=true,linkcolor=red, anchorcolor=green, citecolor=cyan, urlcolor=red, filecolor=magenta, pdftoolbar=true} %\usepackage{draftwatermark} \usepackage{lineno} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \def\N{{\mathbb N}} \def\Q{{\mathbb Q}} \def\R{{\mathbb R}} \def\ve{\varepsilon} \def\Z{{\mathbb Z}} \newtheorem{Theo}{Theorem}[section] \newtheorem{Lem}[Theo]{Lemma} \newtheorem{proposition}[Theo]{Proposition} \newtheorem{theorem}[Theo]{Theorem} \newtheorem{corollary}[Theo]{Corollary} \newtheorem{remark}[Theo]{Remark} \newtheorem{Cor}[Theo]{Corollary} \theoremstyle{definition} \newtheorem{definition}[Theo]{Definition} \newtheorem{example}[Theo]{Example} %\newtheorem{exercise}[theorem]{Exercise} %\newtheorem{conclusion}[theorem]{Conclusion} %\newtheorem{conjecture}[theorem]{Conjecture} %\newtheorem{criterion}[theorem]{Criterion} %\newtheorem{summary}[theorem]{Summary} %\newtheorem{axiom}[theorem]{Axiom} %\newtheorem{problem}[theorem]{Problem} %\theoremstyle{Rem} \newtheorem{Rem}[Theo]{Remark} %\numberwithin{equation}{section} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\sgn}{sgn} \def\R{\mathbb{R}} \def\N{\mathbb{N}} \usepackage{amscd} %\SetWatermarkText{Galley Proof}\SetWatermarkScale{4} \begin{document} %\linenumbers \setcounter{page}{45} \begin{center}{\footnotesize Khayyam J. Math. 1 (2015), no. 1, 45--61}\\\end{center} \noindent\parbox{2.85cm}{\includegraphics*[keepaspectratio=true,scale=0.24]{KJM.jpg}} \vspace{0.5cm} \title[Generalizations of Steffensen's inequality]{Generalizations of Steffensen's inequality by Abel-Gontscharoff polynomial} \author[J. Pe\v{c}ari\'{c}, A. Peru\v{s}i\'{c}, K. Smoljak]{Josip Pe\v{c}ari\'{c}$^1$, Anamarija Peru\v{s}i\'{c}$^2$ and Ksenija Smoljak$^{3*}$} \address{$^1$ Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovi\'{c}a~28a, \hbox{10000 Zagreb,} Croatia} \email{pecaric@element.hr} \address{$^2$ Faculty of Civil Engineering, University of Rijeka, Radmile Matej\v ci\' c 3, \hbox{51000 Rijeka,} Croatia} \email{anamarija.perusic@gradri.hr} \address{$^3$ Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovi\'{c}a~28a, \hbox{10000 Zagreb,} Croatia} \email{ksmoljak@ttf.hr} \dedicatory{{\rm Communicated by A.R. Mirmostafaee}} \subjclass[2010]{Primary 26D15; Secondary 26D20.} \keywords{Steffensen's inequality, Abel-Gontscharoff polynomial, Ostrowski type inequality, $n-$exponential convexity.} \date{Received: 28 June 2014; Accepted: 1 September 2014. \newline \indent $^{*}$ Corresponding author} \begin{abstract} In this paper generalizations of Steffensen's inequality using Abel-Gontscharoff interpolating polynomial are obtained. Moreover, in a special case generalizations by Abel-Gontscharoff polynomial reduce to known weaker conditions for Steffensen's inequality. Furthermore, Ostrowski type inequalities related to obtained generalizations are given. \end{abstract} \maketitle %%%%%%%%%%%%%%%%%%%%%% \section{Introduction} %%%%%%%%%%%%%%%%%%%%%% Let $-\infty< a< b < \infty$ and let $ a\leq a_{1} < a_{2}<...< a_{n} \leq b $ be the given points. For $f\in C^{n} [ a, b ]$ \emph{Abel-Gontscharoff interpolating polynomial $P_{AG}$} of degree $(n-1)$ satisfying Abel-Gontscharoff conditions \begin{equation*} P_{AG}^{(i)}( a_{i+1}) = f^{(i)}( a_{i+1}), \quad 0\leq i \leq n-1 \end{equation*} exists uniquely (\cite{D}, \cite{G}).\\ This conditions in particular include two-point right focal conditions \begin{align*} P_{ AG2}^{(i)}( a_1) & = f^{(i)}( a_1), \,\,\, 0 \leq i \leq \alpha,\\ P_{ AG2}^{(i)}( a_2 ) & = f^{(i)}( a_2 ), \,\,\, \alpha +1 \leq i \leq n-1, \,\, a\leq a_10$. For $\varepsilon$ small enough we define $f_\varepsilon(s)$ by \begin{equation*} f_\varepsilon(s)= \begin{cases} 0,& a\leq s \leq s_0, \\ \frac{1}{\varepsilon \, n!}(s-s_0)^{n}, &s_0\leq s\leq s_0+\varepsilon, \\ \frac{1}{n!}(s-s_0)^{n-1}, & s_0+\varepsilon \leq s\leq \max\{ b,d\}. \end{cases} \end{equation*} Then for $\varepsilon$ small enough $$ \left\vert \int_a^{\max\{ b,d\}} K_n(s) f^{(n)}(s)ds \right\vert =\left\vert \int_{s_0}^{s_0+\varepsilon} K_n(s)\frac{1}{\varepsilon} ds\right\vert =\frac{1}{\varepsilon} \int_{s_0}^{s_0+\varepsilon} K_n(s) ds. $$ Now from inequality (\ref{sharp_pom}) we have $$ \frac{1}{\varepsilon} \int_{s_0}^{s_0+\varepsilon} K_n(s)ds \leq K_n(s_0) \int_{s_0}^{s_0+\varepsilon} \frac{1}{\varepsilon} ds =K_n(s_0). $$ Since, $$ \lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{s_0}^{s_0+\varepsilon} K_n(s)ds =K_n(s_0) $$ the statement follows. In case $K_n(s_0)<0$ we define \begin{equation*} f_\varepsilon(s)= \begin{cases} \frac{1}{n!}(s-s_0-\varepsilon)^{n-1},, & a\leq s\leq s_0, \\ -\frac{1}{\varepsilon \, n!}(s-s_0-\varepsilon)^{n}, &s_0\leq s\leq s_0+\varepsilon, \\ 0,& s_0+\varepsilon\leq s \leq \max\{ b,d\}, \\ \end{cases} \end{equation*} and the rest of the proof is the same as above. \end{proof} \begin{theorem} \label{tm:ag_Lp_a} Suppose that all assumptions of Theorem~\ref{thm:gen_ag} for $c=a$ and $d=a+\lambda$ hold. Assume $\left( p,q\right)$ is a pair of conjugate exponents, that is $1\leq p,q\leq \infty $, $1/p+1/q=1$. Let $\left\vert f^{\left( n\right) }\right\vert ^{p}:\left[ a,b\right]\cup \left[ a,a+\lambda\right] \rightarrow \R$ be an R-integrable function for some $n\geq1$. Let $K_n(s)$ be defined by (\ref{K1_a_ag}) in case $a\leq a+\lambda \leq b $ and by (\ref{K2_a_ag}) in case $a \leq b\leq a+\lambda.$ Then we have \begin{equation} \begin{split} \label{bound_Lp_a_ag} &\left\vert \int_{a}^{b}w(t) f\left( t\right) dt-\int_{a}^{a+\lambda} f\left( t\right) dt-T_{w,n}^{\left[ a,b \right] } +T_{1,n}^{\left[ a,a+\lambda\right] } \right\vert \\ &\leq \left\Vert f^{\left( n\right) }\right\Vert _{p} \left( \int_{a}^{\max \left\{ b,a+\lambda\right\} }\left\vert K_{n}\left( s\right) \right\vert ^{q}ds\right) ^{\frac{1}{q}}. \end{split} \end{equation} The constant $\left( \int_{a}^{\max \left\{ b,a+\lambda\right\}} \left\vert K_{n}\left( s\right) \right\vert ^{q}ds\right)^{1/q}$ in the inequality (\ref{bound_Lp_a_ag}) is sharp for $10$ which shows that $f_{p}$ is $n$-convex on $\mathbb{R}$ for every $p\in \mathbb{R}$ and $p\mapsto \frac{d^{n}f_{p}}{dx^{n}}(x)$ is exponentially convex by definition. Using analogous arguing as in the proof of Theorem \ref{thm_neksp2} we also have that $p\mapsto f_{p}[x_{0},\ldots,x_{m}]$ is exponentially convex (and so exponentially convex in the Jensen sense). Using Corollary \ref{cornovo} we conclude that $p\mapsto L_{i}(f_{p}), i=1,2,3$, are exponentially convex in the Jensen sense. It is easy to verify that this mapping is continuous (although mapping $p\mapsto f_{p}$ is not continuous for $p=0$), so it is exponentially convex. For this family of functions, $\mu_{p,q}(L_{i},\Omega_{1}),~i=1,2,3$, from \eqref{misredina}, becomes $$\mu_{p,q}(L_{i},\Omega_{1})=\left\{\begin{array}{ll} \left(\frac{L_{i}(f_{p})}{L_{i}(f_{q})}\right)^{\frac{1}{p-q}}, & p\neq q, \\ \exp\left(\frac{L_{i}(id\cdot f_{p})}{L_{i}(f_{p})}-\frac{n}{p}\right), & p=q\neq 0, \\ \exp\left(\frac{1}{n+1}\frac{L_{i}(id\cdot f_{0})}{L_{i}(f_{0})}\right), & p=q=0,\end{array}\right.$$ where $id$ is the identity function. Also, by Corollary \ref{cornovo2} it is monotonic function in parameters $p$ and $q$. \\We observe here that $\left(\frac{\frac{d^{n}f_{p}}{dx^{n}}}{\frac{d^{n}f_{q}}{dx^{n}}}\right)^{\frac{1}{p-q}}(\log x)=x$ so using Theorem \ref{thm:cauchy_a} it follows that: $$M_{p,q}(L_{i},\Omega_{1})=\log \mu_{p,q}(L_{i},\Omega_{1}), ~~~i=1,2,3$$ satisfies $$\min\{a,c,b-\lambda\}\leq M_{p,q}(L_{i},\Omega_{1})\leq \max\{b,d,a+\lambda\}, ~~~i=1,2,3.$$ So, $M_{p,q}(L_{i},\Omega_{1})$ is a monotonic mean. \end{example} \begin{example} \label{ex2} Consider a family of functions $$\Omega_{2}=\{g_{p}:(0,\infty)\rightarrow\mathbb{R}: p\in\mathbb{R}\}$$ defined by $$g_{p}(x)=\left\{\begin{array}{ll}\frac{x^{p}}{p(p-1)\cdots(p-n+1)}, & p\notin \{0,1,\ldots,n-1\},\\ \frac{x^{j}\log{x}}{(-1)^{n-1-j}j!(n-1-j)!}, & p=j\in\{0,1,\ldots,n-1\}.\end{array}\right.$$ Here, $\frac{d^{n}g_{p}}{dx^{n}}(x)=x^{p-n}>0$ which shows that $g_{p}$ is $n-$convex for $x>0$ and $p\mapsto \frac{d^{n}g_{p}}{dx^{n}}(x)$ is exponentially convex by definition. Arguing as in Example \ref{example1} we get that the mappings $p\mapsto L_{i}(g_{p}), i=1,2,3$ are exponentially convex. For this family of functions $\mu_{p,q}(L_{i},\Omega_{2}),~i=1,2,3$, from \eqref{misredina}, is now equal to {\small $$\mu_{p,q}(L_{i},\Omega_{2})=\left\{\begin{array}{ll} \left(\frac{L_{i}(g_{p})}{L_{i}(g_{q})}\right)^{\frac{1}{p-q}}, & p\neq q, \\ \exp\left((-1)^{n-1}(n-1)!\frac{L_{i}(g_{0}g_{p})}{L_{i}(g_{p})}+\sum\limits_{k=0}^{n-1}\frac{1}{k-p}\right), & p=q\notin \{0,1,\ldots,n-1\}, \\ \exp\left((-1)^{n-1}(n-1)!\frac{L_{i}(g_{0}g_{p})}{2L_{i}(g_{p})}+\sum\limits_{\substack{k=0\\k\neq p}}^{n-1}\frac{1}{k-p}\right), & p=q\in \{0,1,\ldots,n-1\}.\end{array}\right.$$} Again, using Theorem \ref{thm:cauchy_a} we conclude that \begin{equation*} \min \{a,b-\lambda,c\}\leq\left(\frac{L_{i}(g_{p})}{L_{i}(g_{q})}\right)^{\frac{1}{p-q}}\leq \max \{a+\lambda,b,d\},~~~i=1,2,3. \end{equation*} So, $\mu_{p,q}(L_{i},\Omega_{2}),i=1,2,3$ is a mean. \end{example} \begin{example} \label{ex3} Consider a family of functions $$\Omega_{3}=\{\phi_{p}:(0,\infty)\rightarrow\mathbb{R} :p\in(0,\infty)\}$$ defined by $$\phi_{p}(x)=\left\{\begin{array}{ll}\frac{p^{-x}}{(-\log p)^{n}}, & p\neq 1\\ \frac{x^{n}}{n!}, & p=1.\end{array}\right.$$ Since $\frac{d^{n}\phi_{p}}{dx^{n}}(x)=p^{-x}$ is the Laplace transform of a non-negative function (see \cite{WID}) it is exponentially convex. Obviously $\phi_{p}$ are $n$-convex functions for every $p>0$. For this family of functions, $\mu_{p,q}(L_{i},\Omega_{3}),i=1,2,3$ from \eqref{misredina} is equal to $$\mu_{p,q}(L_{i},\Omega_{3})=\left\{\begin{array}{ll} \left(\frac{L_{i}(\phi_{p})}{L_{i}(\phi_{q})}\right)^{\frac{1}{p-q}}, & p\neq q, \\ \exp\left(-\frac{L_{i}(id\cdot \phi_{p})}{p\ L_{i}(\phi_{p})}-\frac{n}{p\log{p}}\right), & p=q\neq 1, \\ \exp\left(-\frac{1}{n+1}\frac{L_{i}(id\cdot \phi_{1})}{L_{i}(\phi_{1})}\right), & p=q=1,\end{array}\right.$$where $id$ is the identity function. This is a monotone function in parameters $p$ and $q$ by \eqref{minejednakost}. Using Theorem \ref{thm:cauchy_a} it follows that $$M_{p,q}(L_{i},\Omega_{3})=-L(p,q)\log \mu_{p,q}(L_{i},\Omega_{3}), ~~~i=1,2,3$$ satisfies $$\min \{a,b-\lambda,c\}\leq M_{p,q}(L_{i},\Omega _{3})\leq \max \{a+\lambda,b,d\}.$$ So $M_{p,q}(L_{i},\Omega _{3})$ is a monotonic mean. $L(p,q)$ is a logarithmic mean defined by \begin{equation*} L(p,q)=% \begin{cases} \frac{p-q}{\log p-\log q}, & p\neq q \\ p, & p=q.% \end{cases}% \end{equation*} \end{example} \begin{example} Consider a family of functions $$\Omega_{4}=\{\psi_{p}:(0,\infty)\rightarrow\mathbb{R}:p\in(0,\infty)\}$$ defined by $$\psi_{p}(x)=\frac{e^{-x\sqrt{p}}}{(-\sqrt{p})^{n}}.$$ Since $\frac{d^{n}\psi_{p}}{dx^{n}}(x)=e^{-x\sqrt{p}}$ is the Laplace transform of a non-negative function (see \cite{WID}) it is exponentially convex. Obviously $\psi_{p}$ are $n$-convex functions for every $p>0$. For this family of functions, $\mu_{p,q}(L_{i},\Omega_{4}),i=1,2,3$ from \eqref{misredina} is equal to $$\mu_{p,q}(L_{i},\Omega_{4})=\left\{\begin{array}{ll} \left(\frac{L_{i}(\psi_{p})}{L_{i}(\psi_{q})}\right)^{\frac{1}{p-q}}, & p\neq q, \\ \exp\left(-\frac{L_{i}(id\cdot \psi_{p})}{2\sqrt{p}L_{i}(\psi_{p})}-\frac{n}{2p}\right), & p=q, \end{array}\right.$$ where $id$ is the identity function. This is monotone function in parameters $p$ and $q$ by \eqref{minejednakost}. Using Theorem \ref{thm:cauchy_a} it follows that $$M_{p,q}(L_{i},\Omega_{4})=-(\sqrt{p}+\sqrt{q})\log \mu_{p,q}(L_{i},\Omega_{4}), ~~~i=1,2,3$$ satisfies $\min \{a,b-\lambda,c\}\leq M_{p,q}(L_{i},\Omega _{4})\leq \max \{a+\lambda,b,d\}$, so $% M_{p,q}(L_{i},\Omega _{4})$ is a monotonic mean. \end{example} {\bf Acknowledgement.} The research of Josip Pe\v cari\' c and Ksenija Smoljak has been fully supported by Croatian Science Foundation under the project 5435 and the research of Anamarija Peru\v si\' c has been fully supported by University of Rijeka under the project 13.05.1.1.02. \bibliographystyle{amsplain} \begin{thebibliography}{99} \bibitem{AW} R.P.~Agarwal, P.J.~Y.Wong, {\it Error Inequalities in Polynomial Interpolation and Their Applications}, Kluwer Academic Publishers, Dordrecht / Boston / London, 1993. \bibitem{AN1} D.R.~Anderson, \emph{Time-scale integral inequalites}, J. Inequal. Pure Appl. Math. {\bf{6}} (2005), no. 3, Article 16, 15 pages. \bibitem{atkinson} K.E. Atkinson, {\it An Introduction to Numerical Analysis}, 2nd ed., Wiley, New York, 1989. \bibitem{B} S.N.~Bernstein, {\it Sur les fonctions absolument monotones}, Acta Math. {\bf 52} (1929), 1--66. \bibitem{Cerone2} P.~Cerone, \emph{Special functions: approximations and bounds}, Appl. Anal. Discrete Math. {\bf 1} (2007), no. 1, 72--91. \bibitem{CCM} B.~Choczewski, I.~Corovei, A.~Matkowska, \emph{On some functional equations related to Steffensen's inequality}, Ann. Univ. Paedagog. Crac. Stud. Math. {\bf 4} (2004), 31--37. \bibitem{D} P.J.~Davis, {\it Interpolation and Approximation}, Blaisdell Publishing Co., Boston, 1961. \bibitem{ehm} W.~Ehm, M.G.~Genton, T.~Gneiting, {\it Stationary covariance associated with exponentially convex functions}, Bernoulli \textbf{9} (2003), no. 4, 607--615. \bibitem{GO1} L.~Gajek, A.~Okolewski, \emph{Steffensen-type inequalites for order and record statistics}, Ann. Univ. Mariae Curie-Sk\l{}odowska, Sect. A {\bf 51} (1997), no. 1, 41--59. \bibitem{GO2} L.~Gajek, A.~Okolewski, \emph{Sharp bounds on moments of generalized order statistics}, Metrika {\bf 52} (2000), no. 1, 27--43. \bibitem{GO3} L.~Gajek, A.~Okolewski, \emph{Improved Steffensen type bounds on expectations of record statistics}, Statist. Probab. Lett. {\bf 55} (2001), no. 2, 205--212. \bibitem{G} V.L.~Gontscharoff, {\it Theory of Interpolation and Approximation of Functions}, Gostekhizdat, Moscow, 1954. \bibitem{JULI} J.~Jak\v{s}eti\'{c}, J.~Pe\v{c}ari\'{c}, {\it Exponential convexity method}, J. Convex Anal. (2013), no. 1, 181-197. \bibitem{MIL1} G.~Milovanovi\'{c} and J.~Pe\v{c}ari\'{c}, {\it The Steffensen inequality for convex function of order $n$}, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., (1979), no. {\bf 634--677} 97--100. \bibitem{OY} U.M.~Ozkan, H.~Yildrim, \emph{Steffensen's integral inequality on time scales}, J. Inequal. Appl. {\bf 2007} (2007), Art. ID 46524. \bibitem{jure} J.~Pe\v{c}ari\'{c}, J.~Peri\' c, {\it Improvements of the Giaccardi and the Petrovi\' c inequality and related results}, An. Univ. Craiova Ser. Mat. Inform., {\bf 39} (2012), no. 1, 65--75. \bibitem{PPT} J.E.~Pe\v{c}ari\'{c}, F.~Proschan and Y.L.~Tong, {\it Convex functions, partial orderings, and statistical applications}, Mathematics in science and engineering 187, Academic Press, 1992. \bibitem{STEFF} J.F.~Steffensen, {\it On certain inequalities between mean values and their application to actuarial problems}, Skand. Aktuarietids. (1918), 82--97. \bibitem{WID} D.V.~Widder, {\it The Laplace transform}, Princeton Univ. Press, New Jersey, 1941. \end{thebibliography} \end{document} .