%------------------------------------------------------------------------------ % Here please write the date of submission of paper or its revisions: %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref} \hypersetup{colorlinks=true,linkcolor=red, anchorcolor=green, citecolor=cyan, urlcolor=red, filecolor=magenta, pdftoolbar=true} %\usepackage{draftwatermark} \usepackage{lineno} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{summary}[theorem]{Summary} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \usepackage{amscd} %\SetWatermarkText{Galley Proof}\SetWatermarkScale{4} \begin{document} %\linenumbers \setcounter{page}{1} \begin{center}{\footnotesize Khayyam J. Math. 1 (2015), no. 1, 1--35}\\\end{center} \noindent\parbox{2.85cm}{\includegraphics*[keepaspectratio=true,scale=0.24]{KJM.jpg}} \vspace{0.5cm} \title[A Survey on Ostrowski Type Inequalities]{A Survey on Ostrowski Type Inequalities Related to Pompeiu's Mean Value Theorem} \author[S.S. Dragomir]{Silvestru S. Dragomir} \address{Mathematics, College of Engineering \& Science\\ Victoria University, P.O. Box 14428\\ Melbourne City, MC 8001, Australia. \newline School of Computational \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa.} \email{sever.dragomir@vu.edu.au} \urladdr{http://rgmia.org/dragomir} \dedicatory{{\rm Communicated by M.S. Moslehian}} \subjclass[2010]{Primary 26D10; Secondary 26D15} \keywords{Ostrowski inequality, Pompeiu's mean inequality, integral inequalities, special means.} \date{Received: 18 June 2014; Accepted: 18 July 2014.} \begin{abstract} In this paper we survey some recent results obtained by the author related to Pompeiu's mean value theorem and inequality. Natural applications to Ostrowski type inequalities that play an important role in Numerical Analysis, Approximation Theory, Probability Theory \& Statistics, Information Theory and other fields, are given as well. \end{abstract} \maketitle \section{Introduction} \noindent In 1946, Pompeiu \cite{opaDP} derived a variant of Lagrange's mean value theorem, now known as \textit{Pompeiu's mean value theorem} (see also \cite[% p. 83]{opaPKSTR}). \begin{theorem}[Pompeiu, 1946 \protect\cite{opaDP}] \label{l.op.1}For every real valued function $f$ differentiable on an interval $\left[ a,b\right] $ not containing $0$ and for all pairs $% x_{1}\neq x_{2}$ in $\left[ a,b\right] ,$ there exists a point $\xi $ between $x_{1}$ and $x_{2}$ such that \begin{equation} \frac{x_{1}f\left( x_{2}\right) -x_{2}f\left( x_{1}\right) }{x_{1}-x_{2}}% =f\left( \xi \right) -\xi f^{\prime }\left( \xi \right) . \label{e.op.1} \end{equation} \end{theorem} Following \cite[p. 84 -- 85]{opaPKSTR}, we will mention here a geometrical interpretation of Pompeiu's theorem. The equation of the secant line joining the points $\left( x_{1},f\left( x_{1}\right) \right) $ and $\left( x_{2},f\left( x_{2}\right) \right) $ is given by \begin{equation*} y=f\left( x_{1}\right) +\frac{f\left( x_{2}\right) -f\left( x_{1}\right) }{% x_{2}-x_{1}}\left( x-x_{1}\right) . \end{equation*}% This line intersects the $y-$axis at the point $\left( 0,y\right) ,$ where $% y $ is \begin{align*} y& =f\left( x_{1}\right) +\frac{f\left( x_{2}\right) -f\left( x_{1}\right) }{% x_{2}-x_{1}}\left( 0-x_{1}\right) \\ & =\frac{x_{1}f\left( x_{2}\right) -x_{2}f\left( x_{1}\right) }{x_{1}-x_{2}}. \end{align*}% The equation of the tangent line at the point $\left( \xi ,f\left( \xi \right) \right) $ is \begin{equation*} y=\left( x-\xi \right) f^{\prime }\left( \xi \right) +f\left( \xi \right) . \end{equation*}% The tangent line intersects the $y-$axis at the point $\left( 0,y\right) ,$ where \begin{equation*} y=-\xi f^{\prime }\left( \xi \right) +f\left( \xi \right) . \end{equation*}% Hence, the geometric meaning of Pompeiu's mean value theorem is that \textit{% the tangent of the point }$\left( \xi ,f\left( \xi \right) \right) $\textit{% \ intersects on the }$y-$\textit{axis at the same point as the secant line connecting the points }$\left( x_{1},f\left( x_{1}\right) \right) $\textit{\ and }$\left( x_{2},f\left( x_{2}\right) \right) .$ The following inequality is a simple consequence of \textit{Pompeiu's mean value theorem.} \begin{corollary}[Pompeiu's Inequality] \label{c.opa.1}With the assumptions of Theorem \ref{l.op.1} and if $% \left\Vert f-\ell f^{\prime }\right\Vert _{\infty }=\sup_{t\in \left( a,b\right) }\left\vert f\left( t\right) -tf^{\prime }\left( t\right) \right\vert <\infty $ where $\ell \left( t\right) =t,$ $t\in \left[ a,b% \right] ,$ then \begin{equation} \left\vert tf\left( x\right) -xf\left( t\right) \right\vert \leq \left\Vert f-\ell f^{\prime }\right\Vert _{\infty }\left\vert x-t\right\vert \label{e.opa.2} \end{equation}% for any $t,x\in \left[ a,b\right] .$ \end{corollary} The inequality (\ref{e.opa.2}) was obtained by the author in \cite{opaSSD}, see also \cite{opaSSD0}. In 1938, A. Ostrowski \cite{ompAO} proved the following result in the estimating the integral mean: \begin{theorem}[Ostrowski, 1938 \protect\cite{ompAO}] \label{t.op.3.0}Let $f:\left[ a,b\right] \rightarrow \mathbb{R}$ be continuous on $\left[ a,b\right] $ and differentiable on $\left( a,b\right) $ with $\left\vert f^{\prime }\left( t\right) \right\vert \leq M<\infty $ for all $t\in \left( a,b\right) .$ Then for any $x\in \left[ a,b\right] ,$ we have the inequality% \begin{equation} \left\vert f\left( x\right) -\frac{1}{b-a}\int_{a}^{b}f\left( t\right) dt\right\vert \leq \left[ \frac{1}{4}+\left( \frac{x-\frac{a+b}{2}}{b-a}% \right) ^{2}\right] M\left( b-a\right) . \label{e.op.3.0} \end{equation}% The constant $\frac{1}{4}$ is best possible in the sense that it cannot be replaced by a smaller quantity. \end{theorem} In order to provide another approximation of the integral mean, by making use of the Pompeiu's mean value theorem, the author proved the following result: \begin{theorem}[Dragomir, 2005 \protect\cite{opaSSD}] \label{t.op.3.1}Let $f:\left[ a,b\right] \rightarrow \mathbb{R}$ be continuous on $\left[ a,b\right] $ and differentiable on $\left( a,b\right) $ with $\left[ a,b\right] $ not containing $0.$ Then for any $x\in \left[ a,b% \right] ,$ we have the inequality \begin{align} \left\vert \frac{a+b}{2}\cdot \frac{f\left( x\right) }{x}-\frac{1}{b-a}% \int_{a}^{b}f\left( t\right) dt\right\vert & \leq \frac{b-a}{\left\vert x\right\vert }\left[ \frac{1}{4}+\left( \frac{x-\frac{a+b}{2}}{b-a}\right) ^{2}\right] \label{e.op.3.1} \\ & \times \left\Vert f-\ell f^{\prime }\right\Vert _{\infty }, \notag \end{align}% where $\ell \left( t\right) =t,$ $t\in \left[ a,b\right] .$ The constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller constant. \end{theorem} In \cite{ompECP}, E. C. Popa using a mean value theorem obtained a generalization of (\ref{e.op.3.1}) as follows: \begin{theorem}[Popa, 2007 \protect\cite{ompECP}] \label{t.op.3.2}Let $f:\left[ a,b\right] \rightarrow \mathbb{R}$ be continuous on $\left[ a,b\right] $ and differentiable on $\left( a,b\right) . $ Assume that $\alpha \notin \left[ a,b\right] .$ Then for any $x\in \left[ a,b\right] ,$ we have the inequality \begin{align} & \left\vert \left( \frac{a+b}{2}-\alpha \right) f\left( x\right) +\frac{% \alpha -x}{b-a}\int_{a}^{b}f\left( t\right) dt\right\vert \label{e.op.3.2} \\ & \leq \left[ \frac{1}{4}+\left( \frac{x-\frac{a+b}{2}}{b-a}\right) ^{2}% \right] \left( b-a\right) \left\Vert f-\ell _{\alpha }f^{\prime }\right\Vert _{\infty }, \notag \end{align}% where $\ell _{\alpha }\left( t\right) =t-\alpha ,$ $t\in \left[ a,b\right] .$ \end{theorem} In \ \cite{ompJPSU}, J. Pe\v{c}ari\'{c} and S. Ungar have proved a general estimate with the $p$-norm, $1\leq p\leq \infty $ which for $p=\infty $ give Dragomir's result. \begin{theorem}[Pe\v{c}ari\'{c} \& Ungar, 2006 \protect\cite{ompJPSU}] \label{t.op.3.3}Let $f:\left[ a,b\right] \rightarrow \mathbb{R}$ be continuous on $\left[ a,b\right] $ and differentiable on $\left( a,b\right) $ with $0a>$ $0.$ Then for any $t,x\in \left[ a,b\right] $ we have% \begin{align} & \left\vert tf\left( x\right) -xf\left( t\right) \right\vert \label{e.opa.3} \\ & \leq \left\{ \begin{array}{ll} \left\Vert f-\ell f^{\prime }\right\Vert _{\infty }\left\vert x-t\right\vert & \text{if }f-\ell f^{\prime }\in L_{\infty }\left[ a,b\right] \\ & \\ \frac{1}{2q-1}\left\Vert f-\ell f^{\prime }\right\Vert _{p}\left\vert \frac{% x^{q}}{t^{q-1}}-\frac{t^{q}}{x^{q-1}}\right\vert ^{1/q} & \begin{array}{l} \text{if }f-\ell f^{\prime }\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1% \end{array}% \end{array} \\ & \\ \left\Vert f-\ell f^{\prime }\right\Vert _{1}\frac{\max \left\{ t,x\right\} }{\min \left\{ t,x\right\} } & \end{array}% \right. \notag \end{align}% or, equivalently% \begin{align} & \left\vert \frac{f\left( x\right) }{x}-\frac{f\left( t\right) }{t}% \right\vert \label{e.opa.3.a} \\ & \leq \left\{ \begin{array}{ll} \left\Vert f-\ell f^{\prime }\right\Vert _{\infty }\left\vert \frac{1}{t}-% \frac{1}{x}\right\vert & \text{if }f-\ell f^{\prime }\in L_{\infty }\left[ a,b\right] \\ & \\ \frac{1}{2q-1}\left\Vert f-\ell f^{\prime }\right\Vert _{p}\left\vert \frac{1% }{t^{2q-1}}-\frac{1}{x^{2q-1}}\right\vert ^{1/q} & \begin{array}{c} \text{if }f-\ell f^{\prime }\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1% \end{array}% \end{array} \\ & \\ \left\Vert f-\ell f^{\prime }\right\Vert _{1}\frac{1}{\min \left\{ t^{2},x^{2}\right\} } & \end{array}% \right. \notag \end{align} \end{lemma} \begin{proof} If $f$ is absolutely continuous, then $f/\ell $ is absolutely continuous on the interval $\left[ a,b\right] $ that does not containing $0$ and \begin{equation*} \int_{t}^{x}\left( \frac{f\left( s\right) }{s}\right) ^{\prime }ds=\frac{% f\left( x\right) }{x}-\frac{f\left( t\right) }{t} \end{equation*}% for any $t,x\in \left[ a,b\right] $ with $x\neq t.$ Since% \begin{equation*} \int_{t}^{x}\left( \frac{f\left( s\right) }{s}\right) ^{\prime }ds=\int_{t}^{x}\frac{f^{\prime }\left( s\right) s-f\left( s\right) }{s^{2}}% ds \end{equation*}% then we get the following identity% \begin{equation} tf\left( x\right) -xf\left( t\right) =xt\int_{t}^{x}\frac{f^{\prime }\left( s\right) s-f\left( s\right) }{s^{2}}ds \label{e.opa.4} \end{equation}% for any $t,x\in \left[ a,b\right] .$ We notice that the equality (\ref{e.opa.4}) was proved for the smaller class of differentiable function and in a different manner in \cite{ompJPSU}. Taking the modulus in (\ref{e.opa.4}) we have% \begin{eqnarray} \left\vert tf\left( x\right) -xf\left( t\right) \right\vert &=&\left\vert xt\int_{t}^{x}\frac{f^{\prime }\left( s\right) s-f\left( s\right) }{s^{2}}% ds\right\vert \label{e.opa.5} \\ &\leq &xt\left\vert \int_{t}^{x}\left\vert \frac{f^{\prime }\left( s\right) s-f\left( s\right) }{s^{2}}\right\vert ds\right\vert :=I \notag \end{eqnarray}% and utilizing H\"{o}lder's integral inequality we deduce% \begin{eqnarray} I &\leq &xt\left\{ \begin{array}{ll} \sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\vert f^{\prime }\left( s\right) s-f\left( s\right) \right\vert \left\vert \int_{t}^{x}\frac{1}{s^{2}}ds\right\vert & \\ & \\ \left\vert \int_{t}^{x}\left\vert f^{\prime }\left( s\right) s-f\left( s\right) \right\vert ^{p}ds\right\vert ^{1/p}\left\vert \int_{t}^{x}\frac{1}{% s^{2q}}ds\right\vert ^{1/q} & \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1% \end{array} \\ & \\ \left\vert \int_{t}^{x}\left\vert f^{\prime }\left( s\right) s-f\left( s\right) \right\vert ds\right\vert \sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\{ \frac{1}{s^{2}}\right\} & \end{array}% \right. \label{e.opa.6} \\ &\leq &\left\{ \begin{array}{ll} \left\Vert f-\ell f^{\prime }\right\Vert _{\infty }\left\vert x-t\right\vert & \\ & \\ \frac{1}{2q-1}\left\Vert f-\ell f^{\prime }\right\Vert _{p}\left\vert \frac{% x^{q}}{t^{q-1}}-\frac{t^{q}}{x^{q-1}}\right\vert ^{1/q} & \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1% \end{array} \\ & \\ \left\Vert f-\ell f^{\prime }\right\Vert _{1}\frac{\max \left\{ t,x\right\} }{\min \left\{ t,x\right\} } & \end{array}% \right. \notag \end{eqnarray}% and the inequality (\ref{e.opa.3.a}) is proved. \end{proof} \begin{remark} \label{r.opa.2}The first inequality in (\ref{e.opa.3}) also holds in the same form for $0>b>a.$ \end{remark} \begin{remark} \label{r.opa.3}If we take in (\ref{e.opa.3}) $x=A=A\left( a,b\right) :=\frac{% a+b}{2}$ (the arithmetic mean) and $t=G=G\left( a,b\right) :=\sqrt{ab}$ (the geometric mean) then we get the simple inequality for functions of means: \begin{align} & \left\vert Gf\left( A\right) -Af\left( G\right) \right\vert \label{e.opa.6.a} \\ & \leq \left\{ \begin{array}{ll} \left\Vert f-\ell f^{\prime }\right\Vert _{\infty }\left( A-G\right) & \text{% if }f-\ell f^{\prime }\in L_{\infty }\left[ a,b\right] \\ & \\ \frac{1}{2q-1}\left\Vert f-\ell f^{\prime }\right\Vert _{p}\frac{\left( A^{2q-1}-G^{2q-1}\right) ^{1/q}}{A^{1/p}G^{1/p}} & \begin{array}{l} \text{if }f-\ell f^{\prime }\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1% \end{array}% \end{array} \\ & \\ \left\Vert f-\ell f^{\prime }\right\Vert _{1}\frac{A}{G} & \end{array}% \right. \notag \end{align} \end{remark} \subsection{Evaluating the Integral Mean} The following new result holds. \begin{theorem}[Dragomir, 2013 \protect\cite{opaSSD1}] \label{t.opa.3.1}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] $ with $% b>a>$ $0.$ Then for any $x\in \left[ a,b\right] $ we have \begin{align} & \left\vert \frac{a+b}{2}\cdot \frac{f\left( x\right) }{x}-\frac{1}{b-a}% \int_{a}^{b}f\left( t\right) dt\right\vert \label{e.opa.3.1} \\ & \leq \left\{ \begin{array}{ll} \frac{b-a}{x}\left[ \frac{1}{4}+\left( \frac{x-\frac{a+b}{2}}{b-a}\right) ^{2}\right] \left\Vert f-\ell f^{\prime }\right\Vert _{\infty } & \text{if }% f-\ell f^{\prime }\in L_{\infty }\left[ a,b\right] \\ & \\ \frac{1}{\left( 2q-1\right) x\left( b-a\right) ^{1/q}}\left\Vert f-\ell f^{\prime }\right\Vert _{p}\left[ B_{q}\left( a,b;x\right) \right] ^{1/q} & \begin{array}{l} \text{if }f-\ell f^{\prime }\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1% \end{array}% \end{array} \\ & \\ \frac{1}{b-a}\left\Vert f-\ell f^{\prime }\right\Vert _{1}\left( \ln \frac{x% }{a}+\frac{b^{2}-x^{2}}{2x^{2}}\right) , & \end{array}% \right. , \notag \end{align}% where \begin{equation} B_{q}\left( a,b;x\right) =\left\{ \begin{array}{ll} \begin{array}{l} \frac{x^{q}}{2-q}\left( 2x^{q-2}-a^{q-2}-b^{q-2}\right) \\ \\ +\frac{1}{x^{q-1}\left( q+1\right) }\left( b^{q+1}+a^{q+1}-2x^{q+1}\right) ,% \end{array} & q\neq 2 \\ & \\ x^{2}\ln \frac{x^{2}}{ab}+\frac{b^{3}+a^{3}-2x^{3}}{3x}, & q=2% \end{array}% \right. \label{e.opa.3.1.a} \end{equation} \end{theorem} \begin{proof} The first inequality can be proved in an identical way to the case of differentiable functions from \cite{opaSSD} by utilizing the first inequality in (\ref{e.opa.3}). Utilising the second inequality in (\ref{e.opa.3}) we have% \begin{align} & \left\vert \frac{a+b}{2}\cdot f\left( x\right) -\frac{x}{b-a}% \int_{a}^{b}f\left( t\right) dt\right\vert \label{e.opa.3.2} \\ & \leq \frac{1}{b-a}\int_{a}^{b}\left\vert tf\left( x\right) -xf\left( t\right) \right\vert dt \notag \\ & \leq \frac{1}{\left( 2q-1\right) \left( b-a\right) }\left\Vert f-\ell f^{\prime }\right\Vert _{p}\int_{a}^{b}\left\vert \frac{x^{q}}{t^{q-1}}-% \frac{t^{q}}{x^{q-1}}\right\vert ^{1/q}dt \notag \end{align}% Utilising H\"{o}lder's integral inequality we have% \begin{equation} \int_{a}^{b}\left\vert \frac{x^{q}}{t^{q-1}}-\frac{t^{q}}{x^{q-1}}% \right\vert ^{1/q}dt\leq \left( b-a\right) ^{1/p}\left( \int_{a}^{b}\left\vert \frac{x^{q}}{t^{q-1}}-\frac{t^{q}}{x^{q-1}}% \right\vert dt\right) ^{1/q}. \label{e.opa.3.3} \end{equation}% For $q\neq 2$ we have \begin{align*} & \int_{a}^{b}\left\vert \frac{x^{q}}{t^{q-1}}-\frac{t^{q}}{x^{q-1}}% \right\vert dt \\ & =\frac{x^{q}}{2-q}\left( 2x^{q-2}-a^{q-2}-b^{q-2}\right) +\frac{1}{% x^{q-1}\left( q+1\right) }\left( b^{q+1}+a^{q+1}-2x^{q+1}\right) \\ & =B_{q}\left( a,b;x\right) . \end{align*}% For $q=2$ we have \begin{equation*} \int_{a}^{b}\left\vert \frac{x^{2}}{t}-\frac{t^{2}}{x}\right\vert dt=x^{2}\ln \frac{x^{2}}{ab}+\frac{1}{x}\frac{b^{3}+a^{3}-2x^{3}}{3}% =B_{2}\left( a,b;x\right) . \end{equation*}% Utilizing (\ref{e.opa.3.2}) and (\ref{e.opa.3.3}) we get the second inequality in (\ref{e.opa.3.1}). Utilising the third inequality in (\ref{e.opa.3}) we have% \begin{align} \left\vert \frac{a+b}{2}\cdot f\left( x\right) -\frac{x}{b-a}% \int_{a}^{b}f\left( t\right) dt\right\vert & \leq \frac{1}{b-a}% \int_{a}^{b}\left\vert tf\left( x\right) -xf\left( t\right) \right\vert dt \label{e.opa.3.4} \\ & \leq \frac{1}{b-a}\left\Vert f-\ell f^{\prime }\right\Vert _{1}\int_{a}^{b}% \frac{\max \left\{ t,x\right\} }{\min \left\{ t,x\right\} }dt. \notag \end{align}% Since% \begin{equation*} \int_{a}^{b}\frac{\max \left\{ t,x\right\} }{\min \left\{ t,x\right\} }% dt=\int_{a}^{x}\frac{x}{t}dt+\int_{x}^{b}\frac{t}{x}dt=x\ln \frac{x}{a}+% \frac{1}{x}\frac{b^{2}-x^{2}}{2}, \end{equation*}% then by (\ref{e.opa.3.4}) we have% \begin{align*} \left\vert \frac{a+b}{2}\cdot f\left( x\right) -\frac{x}{b-a}% \int_{a}^{b}f\left( t\right) dt\right\vert & \leq \frac{1}{b-a}% \int_{a}^{b}\left\vert tf\left( x\right) -xf\left( t\right) \right\vert dt \\ & \leq \frac{1}{b-a}\left\Vert f-\ell f^{\prime }\right\Vert _{1}\left[ x\ln \frac{x}{a}+\frac{1}{x}\frac{b^{2}-x^{2}}{2}\right] , \end{align*}% and the last part of (\ref{e.opa.3.1}) is thus proved. \end{proof} \begin{remark} \label{r.opa.4}If we take in (\ref{e.opa.3.1}) $x=A=A\left( a,b\right) :=% \frac{a+b}{2}$, then we get \begin{align} & \left\vert f\left( A\right) -\frac{1}{b-a}\int_{a}^{b}f\left( t\right) dt\right\vert \label{e.opa.3.4.a} \\ & \leq \left\{ \begin{array}{ll} \frac{b-a}{4A}\left\Vert f-\ell f^{\prime }\right\Vert _{\infty } & \text{if }f-\ell f^{\prime }\in L_{\infty }\left[ a,b\right] \\ & \\ \frac{1}{\left( 2q-1\right) A\left( b-a\right) ^{1/q}}\left\Vert f-\ell f^{\prime }\right\Vert _{p}\left[ B_{q}\left( a,b;A\right) \right] ^{1/q} & \begin{array}{l} \text{if }f-\ell f^{\prime }\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1% \end{array}% \end{array} \\ & \\ \frac{1}{b-a}\left\Vert f-\ell f^{\prime }\right\Vert _{1}\left( \ln \frac{A% }{a}+\frac{1}{2}\left( b-a\right) \frac{a+3b}{4}A\right) , & \end{array}% \right. , \notag \end{align}% where \begin{equation*} B_{q}\left( a,b;A\right) =\left\{ \begin{array}{ll} \begin{array}{l} \frac{2A^{q}}{2-q}\left( A^{q-2}-A\left( a^{q-2},b^{q-2}\right) \right) \\ \\ +\frac{2}{\left( q+1\right) A^{q-1}}\left( A\left( b^{q+1},a^{q+1}\right) -A^{q+1}\right) ,% \end{array} & q\neq 2 \\ & \\ 2A^{2}\ln \frac{A}{G}+\frac{1}{2}\left( b-a\right) ^{2}, & q=2% \end{array}% \right. \end{equation*} \end{remark} \subsection{A Related Result} The following new result also holds. \begin{theorem}[Dragomir, 2013 \protect\cite{opaSSD1}] \label{t.opa.3.2}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] $ with $% b>a>$ $0.$ Then for any $x\in \left[ a,b\right] $ we have \begin{align} & \left\vert \frac{f\left( x\right) }{x}-\frac{1}{b-a}\int_{a}^{b}\frac{% f\left( t\right) }{t}dt\right\vert \label{e.opa.4.1} \\ & \leq \left\{ \begin{array}{ll} \frac{2}{b-a}\left\Vert f-\ell f^{\prime }\right\Vert _{\infty }\left( \ln \frac{x}{\sqrt{ab}}+\frac{\frac{a+b}{2}-x}{x}\right) & \text{if }f-\ell f^{\prime }\in L_{\infty }\left[ a,b\right] \\ & \\ \frac{1}{\left( 2q-1\right) \left( b-a\right) ^{1/q}}\left\Vert f-\ell f^{\prime }\right\Vert _{p}\left( C_{q}\left( a,b;x\right) \right) ^{1/q} & \begin{array}{l} \text{if }f-\ell f^{\prime }\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1% \end{array}% \end{array} \\ & \\ \frac{1}{b-a}\left\Vert f-\ell f^{\prime }\right\Vert _{1}\frac{x^{2}+ab-2ax% }{x^{2}a}, & \end{array}% \right. , \notag \end{align}% where \begin{equation} C_{q}\left( a,b;x\right) =\frac{1}{x^{2q-1}}\left( b+a-2x\right) +\frac{% a^{2-2q}+b^{2-2q}-2x^{2-2q}}{2\left( q-1\right) },q>1. \label{e.opa.4.2} \end{equation} \end{theorem} \begin{proof} From the first inequality in (\ref{e.opa.3.1.a}) we have% \begin{align} \left\vert \frac{f\left( x\right) }{x}-\frac{1}{b-a}\int_{a}^{b}\frac{% f\left( t\right) }{t}dt\right\vert & \leq \frac{1}{b-a}\int_{a}^{b}\left% \vert \frac{f\left( x\right) }{x}-\frac{f\left( t\right) }{t}\right\vert dt \label{e.opa.4.3} \\ & \leq \left\Vert f-\ell f^{\prime }\right\Vert _{\infty }\frac{1}{b-a}% \int_{a}^{b}\left\vert \frac{1}{t}-\frac{1}{x}\right\vert dt. \notag \end{align}% Since% \begin{align*} \int_{a}^{b}\left\vert \frac{1}{x}-\frac{1}{t}\right\vert dt& =\left[ \int_{a}^{x}\left( \frac{1}{t}-\frac{1}{x}\right) dt+\int_{x}^{b}\left( \frac{1}{x}-\frac{1}{t}\right) dt\right] \\ & =\left( \ln \frac{x^{2}}{ab}+\frac{a+b-2x}{x}\right) \end{align*}% for any $x\in \left[ a,b\right] ,$ then we deduce from (\ref{e.opa.4.3}) the first inequality in (\ref{e.opa.4.1}). From the second inequality in (\ref{e.opa.3.1.a}) we have \begin{align} & \left\vert \frac{f\left( x\right) }{x}-\frac{1}{b-a}\int_{a}^{b}\frac{% f\left( t\right) }{t}dt\right\vert \label{e.opa.4.4} \\ & \leq \frac{1}{b-a}\int_{a}^{b}\left\vert \frac{f\left( x\right) }{x}-\frac{% f\left( t\right) }{t}\right\vert dt \notag \\ & \leq \frac{1}{\left( 2q-1\right) \left( b-a\right) }\left\Vert f-\ell f^{\prime }\right\Vert _{p}\int_{a}^{b}\left\vert \frac{1}{t^{2q-1}}-\frac{1% }{x^{2q-1}}\right\vert ^{1/q}dt. \notag \end{align}% Utilising H\"{o}lder's integral inequality we have% \begin{equation} \int_{a}^{b}\left\vert \frac{1}{t^{2q-1}}-\frac{1}{x^{2q-1}}\right\vert ^{1/q}dt\leq \left( b-a\right) ^{1/p}\left( \int_{a}^{b}\left\vert \frac{1}{% t^{2q-1}}-\frac{1}{x^{2q-1}}\right\vert dt\right) ^{1/q}. \label{e.opa.4.5} \end{equation}% Since% \begin{align*} & \int_{a}^{b}\left\vert \frac{1}{t^{2q-1}}-\frac{1}{x^{2q-1}}\right\vert dt \\ & =\frac{1}{x^{2q-1}}\left( b+a-2x\right) +\frac{a^{2-2q}+b^{2-2q}-2x^{2-2q}% }{2\left( q-1\right) }=C_{q}\left( a,b;x\right) \end{align*}% then by (\ref{e.opa.4.4}) and (\ref{e.opa.4.5}) we get% \begin{align*} & \left\vert \frac{f\left( x\right) }{x}-\frac{1}{b-a}\int_{a}^{b}\frac{% f\left( t\right) }{t}dt\right\vert \\ & \leq \frac{1}{\left( 2q-1\right) \left( b-a\right) }\left\Vert f-\ell f^{\prime }\right\Vert _{p}\left( b-a\right) ^{1/p}\left( C_{q}\left( a,b;x\right) \right) ^{1/q} \end{align*}% and the second inequality in (\ref{e.opa.4.1}) is proved. From the third inequality in (\ref{e.opa.3.1.a}) we have% \begin{align} \left\vert \frac{f\left( x\right) }{x}-\frac{1}{b-a}\int_{a}^{b}\frac{% f\left( t\right) }{t}dt\right\vert & \leq \frac{1}{b-a}\int_{a}^{b}\left% \vert \frac{f\left( x\right) }{x}-\frac{f\left( t\right) }{t}\right\vert dt \label{e.opa.3.6} \\ & \leq \frac{1}{b-a}\left\Vert f-\ell f^{\prime }\right\Vert _{1}\int_{a}^{b}% \frac{1}{\min \left\{ t^{2},x^{2}\right\} }dt. \notag \end{align}% Since% \begin{equation*} \int_{a}^{b}\frac{1}{\min \left\{ t^{2},x^{2}\right\} }dt=\int_{a}^{x}\frac{% dt}{t^{2}}+\int_{x}^{b}\frac{dt}{x^{2}}=\frac{x^{2}+ab-2ax}{x^{2}a}, \end{equation*}% then by (\ref{e.opa.3.6}) we deduce the last part of (\ref{e.opa.4.1}). \end{proof} \begin{remark} \label{r.opa.5}If we take in (\ref{e.opa.4.1}) $x=A=A\left( a,b\right) :=% \frac{a+b}{2}$, then we get \begin{align} & \left\vert \frac{f\left( A\right) }{A}-\frac{1}{b-a}\int_{a}^{b}\frac{% f\left( t\right) }{t}dt\right\vert \label{e.opa.3.7} \\ & \leq \left\{ \begin{array}{ll} \frac{2}{b-a}\left\Vert f-\ell f^{\prime }\right\Vert _{\infty }\ln \left( \frac{A}{G}\right) & \text{if }f-\ell f^{\prime }\in L_{\infty }\left[ a,b% \right] \\ & \\ \frac{1}{\left( 2q-1\right) \left( b-a\right) ^{1/q}}\left\Vert f-\ell f^{\prime }\right\Vert _{p}\left( C_{q}\left( a,b;A\right) \right) ^{1/q} & \begin{array}{l} \text{if }f-\ell f^{\prime }\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1% \end{array}% \end{array} \\ & \\ \frac{1}{2}\left\Vert f-\ell f^{\prime }\right\Vert _{1}\frac{A+a}{A^{2}a}, & \end{array}% \right. , \notag \end{align}% where \begin{equation*} C_{q}\left( a,b;A\right) =\frac{A\left( a^{2-2q},b^{2-2q}\right) -A^{2-2q}}{% q-1},q>1. \end{equation*} \end{remark} \section{Ostrowski Via Power Pompeiu's Inequality} \subsection{Power Pompeiu's Inequality} We can generalize the above (\ref{e.opa.2}) inequality for the power function as follows$.$ \begin{lemma}[Dragomir, 2013 \protect\cite{oppSSD1}] \label{l.opp.2}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] $ with $% b>a>$ $0.$ If $r\in \mathbb{R}$, $r\neq 0,$ then for any $t,x\in \left[ a,b% \right] $ we have% \begin{align} & \left\vert t^{r}f\left( x\right) -x^{r}f\left( t\right) \right\vert \label{e.opp.3} \\ & \leq \left\{ \begin{array}{ll} \frac{1}{\left\vert r\right\vert }\left\Vert f^{\prime }\ell -rf\right\Vert _{\infty }\left\vert t^{r}-x^{r}\right\vert ,\text{if }f^{\prime }\ell -rf\in L_{\infty }\left[ a,b\right] & \\ & \\ \begin{array}{l} \left\Vert f^{\prime }\ell -rf\right\Vert _{p}\left\{ \begin{array}{l} \frac{1}{\left\vert 1-q\left( r+1\right) \right\vert }\left\vert \frac{t^{r}% }{x^{1-q\left( r+1\right) -r}}-\frac{x^{r}}{t^{1-q\left( r+1\right) -r}}% \right\vert , \\ \text{ for }r\neq -\frac{1}{p} \\ \\ t^{r}x^{r}\left\vert \ln x-\ln t\right\vert ,\text{ for }r=-\frac{1}{p}% \end{array}% \right. \\ \text{if }f^{\prime }\ell -rf\in L_{p}\left[ a,b\right]% \end{array} & \\ & \\ \left\Vert f^{\prime }\ell -rf\right\Vert _{1}\frac{t^{r}x^{r}}{\min \left\{ x^{r+1},t^{r+1}\right\} } & \end{array}% \right. \notag \end{align}% or, equivalently% \begin{align} & \left\vert \frac{f\left( x\right) }{x^{r}}-\frac{f\left( t\right) }{t^{r}}% \right\vert \label{e.opp.3.a} \\ & \leq \left\{ \begin{array}{ll} \frac{1}{\left\vert r\right\vert }\left\Vert f^{\prime }\ell -rf\right\Vert _{\infty }\left\vert \frac{1}{x^{r}}-\frac{1}{t^{r}}\right\vert ,\text{ if }% f^{\prime }\ell -rf\in L_{\infty }\left[ a,b\right] & \\ & \\ \begin{array}{l} \left\Vert f^{\prime }\ell -rf\right\Vert _{p}\left\{ \begin{array}{l} \frac{1}{\left\vert 1-q\left( r+1\right) \right\vert }\left\vert \frac{1}{% x^{1-q\left( r+1\right) }}-\frac{1}{t^{1-q\left( r+1\right) }}\right\vert ,% \text{ for }r\neq -\frac{1}{p} \\ \\ \left\vert \ln x-\ln t\right\vert ,\text{ for }r=-\frac{1}{p}% \end{array}% \right. \\ \text{if }f^{\prime }\ell -rf\in L_{p}\left[ a,b\right]% \end{array} & \\ & \\ \left\Vert f^{\prime }\ell -rf\right\Vert _{1}\frac{1}{\min \left\{ x^{r+1},t^{r+1}\right\} } & \end{array}% \right. \notag \end{align}% where $p>1,\frac{1}{p}+\frac{1}{q}=1.$ \end{lemma} \begin{proof} If $f$ is absolutely continuous, then $f/\left( \cdot \right) ^{r}$ is absolutely continuous on the interval $\left[ a,b\right] $ and \begin{equation*} \int_{t}^{x}\left( \frac{f\left( s\right) }{s^{r}}\right) ^{\prime }ds=\frac{% f\left( x\right) }{x^{r}}-\frac{f\left( t\right) }{t^{r}} \end{equation*}% for any $t,x\in \left[ a,b\right] $ with $x\neq t.$ Since% \begin{equation*} \int_{t}^{x}\left( \frac{f\left( s\right) }{s^{r}}\right) ^{\prime }ds=\int_{t}^{x}\frac{f^{\prime }\left( s\right) s^{r}-rs^{r-1}f\left( s\right) }{s^{2r}}ds=\int_{t}^{x}\frac{f^{\prime }\left( s\right) s-rf\left( s\right) }{s^{r+1}}ds \end{equation*}% then we get the following identity% \begin{equation} t^{r}f\left( x\right) -x^{r}f\left( t\right) =x^{r}t^{r}\int_{t}^{x}\frac{% f^{\prime }\left( s\right) s-rf\left( s\right) }{s^{r+1}}ds \label{e.opp.4} \end{equation}% for any $t,x\in \left[ a,b\right] .$ Taking the modulus in (\ref{e.opp.4}) we have% \begin{eqnarray} \left\vert t^{r}f\left( x\right) -x^{r}f\left( t\right) \right\vert &=&x^{r}t^{r}\left\vert \int_{t}^{x}\frac{f^{\prime }\left( s\right) s-rf\left( s\right) }{s^{r+1}}ds\right\vert \label{e.opp.5} \\ &\leq &x^{r}t^{r}\left\vert \int_{t}^{x}\frac{\left\vert f^{\prime }\left( s\right) s-rf\left( s\right) \right\vert }{s^{r+1}}ds\right\vert :=I \notag \end{eqnarray}% and utilizing H\"{o}lder's integral inequality we deduce \begin{eqnarray} I &\leq &x^{r}t^{r}\left\{ \begin{array}{ll} \sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\vert f^{\prime }\left( s\right) s-rf\left( s\right) \right\vert \left\vert \int_{t}^{x}\frac{1}{s^{r+1}}ds\right\vert & \\ & \\ \left\vert \int_{t}^{x}\left\vert f^{\prime }\left( s\right) s-rf\left( s\right) \right\vert ^{p}ds\right\vert ^{1/p}\left\vert \int_{t}^{x}\frac{1}{% s^{q\left( r+1\right) }}ds\right\vert ^{1/q} & \\ & \\ \left\vert \int_{t}^{x}\left\vert f^{\prime }\left( s\right) s-rf\left( s\right) \right\vert ds\right\vert \sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\{ \frac{1}{s^{r+1}}\right\} & \end{array}% \right. \label{e.opp.6} \\ &\leq &x^{r}t^{r}\left\{ \begin{array}{ll} \frac{1}{\left\vert r\right\vert }\left\Vert f^{\prime }\ell -rf\right\Vert _{\infty }\left\vert \frac{1}{x^{r}}-\frac{1}{t^{r}}\right\vert & \\ & \\ \left\Vert f^{\prime }\ell -rf\right\Vert _{p}\left\{ \begin{array}{l} \frac{1}{\left\vert 1-q\left( r+1\right) \right\vert }\left\vert \frac{1}{% x^{1-q\left( r+1\right) }}-\frac{1}{t^{1-q\left( r+1\right) }}\right\vert , \\ r\neq -\frac{1}{p} \\ \\ \left\vert \ln x-\ln t\right\vert ,r=-\frac{1}{p}% \end{array}% \right. & \\ & \\ \left\Vert f^{\prime }\ell -rf\right\Vert _{1}\frac{1}{\min \left\{ x^{r+1},t^{r+1}\right\} }. & \end{array}% \right. \notag \end{eqnarray}% where $p>1,\frac{1}{p}+\frac{1}{q}=1,$ and the inequality (\ref{e.opp.3}) is proved. \end{proof} \subsection{Some Ostrowski Type Results} The following new result also holds. \begin{theorem}[Dragomir, 2013 \protect\cite{oppSSD1}] \label{t.opp.3.2}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] $ with $% b>a>$ $0.$ If $r\in \mathbb{R}$, $r\neq 0,$ and $f^{\prime }\ell -rf\in L_{\infty }\left[ a,b\right] ,$ then for any $x\in \left[ a,b\right] $ we have \begin{align} & \left\vert \frac{b^{r+1}-a^{r+1}}{r+1}f\left( x\right) -x^{r}\int_{a}^{b}f\left( t\right) dt\right\vert \label{e.opp.4.1} \\ & \leq \frac{1}{\left\vert r\right\vert }\left\Vert f^{\prime }\ell -rf\right\Vert _{\infty } \notag \\ & \times \left\{ \begin{array}{l} \frac{2rx^{r+1}-x^{r}\left( a+b\right) \left( r+1\right) +b^{r+1}+a^{r+1}}{% r+1},\text{ if }r>0 \\ \\ \frac{x^{r}\left( a+b\right) \left( r+1\right) -2rx^{r+1}-b^{r+1}-a^{r+1}}{% r+1},\text{ if }r\in \left( -\infty ,0\right) \diagdown \left\{ -1\right\} .% \end{array}% \right. \notag \end{align}% Also, for $r=-1,$ we have \begin{equation} \left\vert f\left( x\right) \ln \frac{b}{a}-\frac{1}{x}\int_{a}^{b}f\left( t\right) dt\right\vert \leq 2\left\Vert f^{\prime }\ell +f\right\Vert _{\infty }\left( \ln \frac{x}{\sqrt{ab}}+\frac{\frac{a+b}{2}-x}{x}\right) \label{e.opp.4.1.a} \end{equation}% for any $x\in \left[ a,b\right] ,$ provided $f^{\prime }\ell +f\in L_{\infty }\left[ a,b\right] $ The constant $2$ in (\ref{e.opp.4.1.a}) is best possible. \end{theorem} \begin{proof} Utilising the first inequality in (\ref{e.opp.3}) for $r\neq -1$ we have% \begin{eqnarray} \left\vert \frac{b^{r+1}-a^{r+1}}{r+1}f\left( x\right) -x^{r}\int_{a}^{b}f\left( t\right) dt\right\vert &\leq &\int_{a}^{b}\left\vert t^{r}f\left( x\right) -x^{r}f\left( t\right) \right\vert dt \label{e.opp.4.2} \\ &\leq &\frac{1}{\left\vert r\right\vert }\left\Vert f^{\prime }\ell -rf\right\Vert _{\infty }\int_{a}^{b}\left\vert t^{r}-x^{r}\right\vert dt. \notag \end{eqnarray}% Observe that \begin{equation*} \int_{a}^{b}\left\vert t^{r}-x^{r}\right\vert dt=\left\{ \begin{array}{l} \int_{a}^{x}\left( x^{r}-t^{r}\right) dt+\int_{x}^{b}\left( t^{r}-x^{r}\right) dt,\text{ if }r>0 \\ \\ \int_{a}^{x}\left( t^{r}-x^{r}\right) dt+\int_{x}^{b}\left( x^{r}-t^{r}\right) dt,\text{ if }r\in \left( -\infty ,0\right) \diagdown \left\{ -1\right\} .% \end{array}% \right. \end{equation*}% Then for $r>0$ we have% \begin{equation*} \int_{a}^{x}\left( x^{r}-t^{r}\right) dt+\int_{x}^{b}\left( t^{r}-x^{r}\right) dt=\frac{2rx^{r+1}-x^{r}\left( a+b\right) \left( r+1\right) +b^{r+1}+a^{r+1}}{r+1} \end{equation*}% and for $r\in \left( -\infty ,0\right) \diagdown \left\{ -1\right\} $ we have \begin{equation*} \int_{a}^{x}\left( t^{r}-x^{r}\right) dt+\int_{x}^{b}\left( x^{r}-t^{r}\right) dt=-\frac{2rx^{r+1}-x^{r}\left( a+b\right) \left( r+1\right) +b^{r+1}+a^{r+1}}{r+1}. \end{equation*}% Making use of (\ref{e.opp.4.2}) we get (\ref{e.opp.4.1}). Utilizing the inequality (\ref{e.opp.3}) for $r=-1$ we have% \begin{equation*} \left\vert t^{-1}f\left( x\right) -x^{-1}f\left( t\right) \right\vert \leq \left\Vert f^{\prime }\ell +f\right\Vert _{\infty }\left\vert t^{-1}-x^{-1}\right\vert \end{equation*}% if $f^{\prime }\ell +f\in L_{\infty }\left[ a,b\right] $. Integrating this inequality, we have% \begin{align} \left\vert f\left( x\right) \ln \frac{b}{a}-x^{-1}\int_{a}^{b}f\left( t\right) dt\right\vert & \leq \int_{a}^{b}\left\vert t^{-1}f\left( x\right) -x^{-1}f\left( t\right) \right\vert dt \label{e.opp.4.3} \\ & \leq \left\Vert f^{\prime }\ell +f\right\Vert _{\infty }\int_{a}^{b}\left\vert t^{-1}-x^{-1}\right\vert dt. \notag \end{align}% Since% \begin{equation*} \int_{a}^{b}\left\vert \frac{1}{x}-\frac{1}{t}\right\vert dt=2\left( \ln \frac{x}{\sqrt{ab}}+\frac{\frac{a+b}{2}-x}{x}\right) , \end{equation*}% then by (\ref{e.opp.4.3}) we get the desired inequality (\ref{e.opp.4.1.a}). Now, assume that (\ref{e.opp.4.1.a}) holds with a constant $C>0,$ i.e.% \begin{equation} \left\vert f\left( x\right) \ln \frac{b}{a}-x^{-1}\int_{a}^{b}f\left( t\right) dt\right\vert \leq C\left\Vert f^{\prime }\ell +f\right\Vert _{\infty }\left( \ln \frac{x}{\sqrt{ab}}+\frac{\frac{a+b}{2}-x}{x}\right) \label{e.opp.4.4} \end{equation}% for any $x\in \left[ a,b\right] .$ If we take in (\ref{e.opp.4.4}) $f\left( t\right) =1,t\in \left[ a,b\right] , $ then we get% \begin{equation} \left\vert \ln \frac{b}{a}-\frac{b-a}{x}\right\vert \leq C\left( \ln \frac{x% }{\sqrt{ab}}+\frac{\frac{a+b}{2}-x}{x}\right) \label{e.opp.4.5} \end{equation}% for any for any $x\in \left[ a,b\right] .$ Making $x=a$ in (\ref{e.opp.4.4}) produces the inequality% \begin{equation*} \left\vert \ln \frac{b}{a}-\frac{b-a}{a}\right\vert \leq C\left( \frac{b-a}{% 2a}-\frac{1}{2}\ln \frac{b}{a}\right) \end{equation*}% which implies that $C\geq 2.$ This proves the sharpness of the constant $2$ in (\ref{e.opp.4.1.a}). \end{proof} \begin{remark} \label{r.opp.3.5}Consider the $r$-Logarithmic mean% \begin{equation*} L_{r}=L_{r}\left( a,b\right) :=\left[ \frac{b^{r+1}-a^{r+1}}{\left( r+1\right) \left( b-a\right) }\right] ^{1/r} \end{equation*}% defined for $r\in \mathbb{R\diagdown }\left\{ 0,-1\right\} $ and the Logarithmic mean, defined as% \begin{equation*} L=L\left( a,b\right) :=\frac{b-a}{\ln b-\ln a}. \end{equation*}% If $A=A\left( a,b\right) :=\frac{a+b}{2},$ then from (\ref{e.opp.4.1}) we get for $x=A$ the inequality \begin{align} & \left\vert L_{r}^{r}\left( b-a\right) f\left( A\right) -A^{r}\int_{a}^{b}f\left( t\right) dt\right\vert \label{e.opp.4.5.a} \\ & \leq \frac{2}{\left\vert r\right\vert }\left\Vert f^{\prime }\ell -rf\right\Vert _{\infty }\left\{ \begin{array}{l} \frac{A\left( b^{r+1},a^{r+1}\right) -A^{r+1}}{r+1},\text{ if }r>0 \\ \\ \frac{A^{r+1}-A\left( b^{r+1},a^{r+1}\right) }{r+1},\text{ if }r\in \left( -\infty ,0\right) \diagdown \left\{ -1\right\} ,% \end{array}% \right. \notag \end{align}% while from (\ref{e.opp.4.1.a}) we get \begin{equation} \left\vert L^{-1}\left( b-a\right) f\left( A\right) -A^{-1}\int_{a}^{b}f\left( t\right) dt\right\vert \leq 2\left\Vert f^{\prime }\ell +f\right\Vert _{\infty }\ln \frac{A}{G} \label{e.opp.4.5.b} \end{equation} \end{remark} The following related result holds. \begin{theorem}[Dragomir, 2013 \protect\cite{oppSSD1}] \label{t.opp.3.1}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] $ with $% b>a>$ $0.$ If $r\in \mathbb{R}$, $r\neq 0,$ then for any $x\in \left[ a,b% \right] $ we have \begin{align} & \left\vert \frac{f\left( x\right) }{x^{r}}\left( b-a\right) -\int_{a}^{b}% \frac{f\left( t\right) }{t^{r}}dt\right\vert \label{e.opp.3.1} \\ & \leq \frac{1}{\left\vert r\right\vert }\left\Vert f^{\prime }\ell -rf\right\Vert _{\infty } \notag \\ & \times \left\{ \begin{array}{l} \frac{2x^{1-r}-a^{1-r}-b^{1-r}}{1-r}+\frac{1}{x^{r}}\left( b+a-2x\right) ,% \text{ }r\in \left( 0,\infty \right) \diagdown \left\{ 1\right\} \\ \\ \frac{a^{1-r}+b^{1-r}-2x^{1-r}}{1-r}+\frac{1}{x^{r}}\left( 2x-a-b\right) ,% \text{ if }r<0.% \end{array}% \right. , \notag \end{align}% Also, for $r=1,$ we have \begin{equation} \left\vert \frac{f\left( x\right) }{x}\left( b-a\right) -\int_{a}^{b}\frac{% f\left( t\right) }{t}dt\right\vert \leq 2\left\Vert f^{\prime }\ell -f\right\Vert _{\infty }\left( \ln \frac{x}{\sqrt{ab}}+\frac{\frac{a+b}{2}-x% }{x}\right) \label{e.opp.3.1.a} \end{equation}% for any $x\in \left[ a,b\right] ,$ provided $f^{\prime }\ell -f\in L_{\infty }\left[ a,b\right] .$ The constant $2$ is best possible in (\ref{e.opp.3.1.a}). \end{theorem} \begin{proof} From the first inequality in (\ref{e.opp.3.a}) we have% \begin{equation} \left\vert \frac{f\left( x\right) }{x^{r}}-\frac{f\left( t\right) }{t^{r}}% \right\vert \leq \frac{1}{\left\vert r\right\vert }\left\Vert f^{\prime }\ell -rf\right\Vert _{\infty }\left\vert \frac{1}{x^{r}}-\frac{1}{t^{r}}% \right\vert ,\text{ } \label{e.opp.3.2} \end{equation}% for any $t,x\in \left[ a,b\right] ,$ provided $f^{\prime }\ell -rf\in L_{\infty }\left[ a,b\right] .$ Integrating over $t\in \left[ a,b\right] $ we get% \begin{align} \left\vert \frac{f\left( x\right) }{x^{r}}\left( b-a\right) -\int_{a}^{b}% \frac{f\left( t\right) }{t^{r}}dt\right\vert & \leq \int_{a}^{b}\left\vert \frac{f\left( x\right) }{x^{r}}-\frac{f\left( t\right) }{t^{r}}\right\vert dt \label{r.opp.3.3} \\ & \leq \frac{1}{\left\vert r\right\vert }\left\Vert f^{\prime }\ell -rf\right\Vert _{\infty }\int_{a}^{b}\left\vert \frac{1}{x^{r}}-\frac{1}{% t^{r}}\right\vert dt,\text{ } \notag \end{align}% for $r\in \mathbb{R}$, $r\neq 0.$ For $r\in \left( 0,\infty \right) \diagdown \left\{ 1\right\} $ we have% \begin{equation*} \int_{a}^{b}\left\vert \frac{1}{x^{r}}-\frac{1}{t^{r}}\right\vert dt=\frac{% 2x^{1-r}-a^{1-r}-b^{1-r}}{1-r}+\frac{1}{x^{r}}\left( b+a-2x\right) \end{equation*}% for any $x\in \left[ a,b\right] .$ For $r<0,$ we also have% \begin{equation*} \int_{a}^{b}\left\vert \frac{1}{x^{r}}-\frac{1}{t^{r}}\right\vert dt=\frac{% a^{1-r}+b^{1-r}-2x^{1-r}}{1-r}+\frac{1}{x^{r}}\left( 2x-a-b\right) \end{equation*}% for any $x\in \left[ a,b\right] .$ For $r=1$ we have \begin{equation*} \int_{a}^{b}\left\vert \frac{1}{x}-\frac{1}{t}\right\vert dt=2\left( \ln \frac{x}{\sqrt{ab}}+\frac{\frac{a+b}{2}-x}{x}\right) \end{equation*}% for any $x\in \left[ a,b\right] ,$ and the inequality (\ref{e.opp.3.1.a}) is obtained. The sharpness of the constant $2$ follows as in the proof of Theorem \ref% {t.opp.3.2} and the details are omitted. \end{proof} \begin{remark} \label{r.opp.3.6}If we take $x=A$ in Theorem \ref{t.opp.3.1}, then we we have \begin{align} & \left\vert \frac{f\left( A\right) }{A^{r}}\left( b-a\right) -\int_{a}^{b}% \frac{f\left( t\right) }{t^{r}}dt\right\vert \label{e.opp.3.4} \\ & \leq \frac{2}{\left\vert r\right\vert }\left\Vert f^{\prime }\ell -rf\right\Vert _{\infty }\left\{ \begin{array}{l} \frac{A^{1-r}-A\left( a^{1-r},b^{1-r}\right) }{1-r},\text{ }r\in \left( 0,\infty \right) \diagdown \left\{ 1\right\} \\ \\ \frac{A\left( a^{1-r},b^{1-r}\right) -A^{1-r}}{1-r},\text{ if }r<0.% \end{array}% \right. , \notag \end{align}% Also, for $r=1,$ we have \begin{equation} \left\vert \frac{f\left( A\right) }{A}\left( b-a\right) -\int_{a}^{b}\frac{% f\left( t\right) }{t}dt\right\vert \leq 2\left\Vert f^{\prime }\ell -f\right\Vert _{\infty }\ln \frac{A}{G}. \label{e.opp.3.5} \end{equation} \end{remark} \begin{remark} \label{r.opp.3.4}The interested reader may obtain other similar results in terms of the $p$-norms $\left\Vert f^{\prime }\ell -rf\right\Vert _{p}$ with $p\geq 1.$ However, since some calculations are too complicated, the details are not presented here. \end{remark} \section{Ostrowski Via an Exponential Pompeiu's Inequality} \subsection{An Exponential Pompeiu's Inequality} We can provide some similar results for complex-valued functions with the exponential instead of $\ell .$ \begin{lemma}[Dragomir, 2013 \protect\cite{opeSSD1}] \label{l.ope.2}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] $ and $% \alpha \in \mathbb{C}$ with ${\rm Re}\left( \alpha \right) \neq 0.$ Then for any $t,x\in \left[ a,b\right] $ we have% \begin{multline} \left\vert \frac{f\left( x\right) }{\exp \left( \alpha x\right) }-\frac{% f\left( t\right) }{\exp \left( \alpha t\right) }\right\vert \label{e.ope.3} \\ \\ \leq \left\{ \begin{array}{ll} \begin{array}{l} \left\vert {\rm Re}\left( \alpha \right) \right\vert \left\Vert f^{\prime }-\alpha f\right\Vert _{\infty } \\ \times \left\vert \frac{1}{\exp \left( t {\rm Re}\left( \alpha \right) \right) }-\frac{1}{\exp \left( x{\rm Re}\left( \alpha \right) \right) }% \right\vert% \end{array} & \begin{array}{l} \text{if }{\small f}^{\prime }{\small -\alpha f} \\ {\small \in L}_{\infty }\left[ a,b\right] ,% \end{array} \\ & \\ \begin{array}{l} q^{1/q}\left\vert {\rm Re}\left( \alpha \right) \right\vert ^{1/q}\left\Vert f^{\prime }-\alpha f\right\Vert _{p} \\ \times \left\vert \frac{1}{\exp \left( tq{\rm Re}\left( \alpha \right) \right) }-\frac{1}{\exp \left( xq{\rm Re}\left( \alpha \right) \right) }% \right\vert ^{1/q}% \end{array} & \begin{array}{l} \text{if }{\small f}^{\prime }{\small -\alpha f} \\ {\small \in L}_{p}\left[ a,b\right] \\ \begin{array}{c} {\small p>1,} \\ \frac{1}{p}{\small +}\frac{1}{q}{\small =1,}% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }-\alpha f\right\Vert _{1}\frac{1}{\min \left\{ \exp \left( t{\rm Re}\left( \alpha \right) \right) ,\exp \left( x{\rm Re}\left( \alpha \right) \right) \right\} }, & \end{array}% \right. \end{multline}% or, equivalently% \begin{multline} \left\vert \exp \left( \alpha t\right) f\left( x\right) -f\left( t\right) \exp \left( \alpha x\right) \right\vert \label{e.ope.3.a} \\ \\ \leq \left\{ \begin{array}{ll} \begin{array}{l} \left\vert {\rm Re}\left( \alpha \right) \right\vert \left\Vert f^{\prime }-\alpha f\right\Vert _{\infty } \\ \times \left\vert \exp \left( x{\rm Re}\left( \alpha \right) \right) -\exp \left( t{\rm Re}\left( \alpha \right) \right) \right\vert% \end{array} & \begin{array}{l} \text{if }{\small f}^{\prime }{\small -\alpha f} \\ {\small \in L}_{\infty }\left[ a,b\right] ,% \end{array} \\ & \\ \begin{array}{l} q^{1/q}\left\vert {\rm Re}\left( \alpha \right) \right\vert ^{1/q}\left\Vert f^{\prime }-\alpha f\right\Vert _{p} \\ \times \left\vert \exp \left( xq{\rm Re}\left( \alpha \right) \right) -\exp \left( tq{\rm Re}\left( \alpha \right) \right) \right\vert ^{1/q}% \end{array} & \begin{array}{l} \text{if }{\small f}^{\prime }{\small -\alpha f} \\ {\small \in L}_{p}\left[ a,b\right] \\ \begin{array}{c} {\small p>1,} \\ \frac{1}{p}{\small +}\frac{1}{q}{\small =1,}% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }-\alpha f\right\Vert _{1}\max \left\{ \exp \left( t% {\rm Re}\left( \alpha \right) \right) ,\exp \left( x{\rm Re}\left( \alpha \right) \right) \right\} . & \end{array}% \right. \end{multline} \end{lemma} \begin{proof} If $f$ is absolutely continuous, then $f/\exp \left( \alpha \cdot \right) $ is absolutely continuous on the interval $\left[ a,b\right] $ and \begin{equation*} \int_{t}^{x}\left( \frac{f\left( s\right) }{\exp \left( \alpha s\right) }% \right) ^{\prime }ds=\frac{f\left( x\right) }{\exp \left( \alpha x\right) }-% \frac{f\left( t\right) }{\exp \left( \alpha t\right) } \end{equation*}% for any $t,x\in \left[ a,b\right] $ with $x\neq t.$ Since% \begin{align*} \int_{t}^{x}\left( \frac{f\left( s\right) }{\exp \left( \alpha s\right) }% \right) ^{\prime }ds& =\int_{t}^{x}\frac{f^{\prime }\left( s\right) \exp \left( \alpha s\right) -\alpha f\left( s\right) \exp \left( \alpha s\right) }{\exp \left( 2\alpha s\right) }ds \\ & =\int_{t}^{x}\frac{f^{\prime }\left( s\right) -\alpha f\left( s\right) }{% \exp \left( \alpha s\right) }ds, \end{align*}% then we get the following identity% \begin{equation} \frac{f\left( x\right) }{\exp \left( \alpha x\right) }-\frac{f\left( t\right) }{\exp \left( \alpha t\right) }=\int_{t}^{x}\frac{f^{\prime }\left( s\right) -\alpha f\left( s\right) }{\exp \left( \alpha s\right) }ds \label{e.ope.4} \end{equation}% for any $t,x\in \left[ a,b\right] $ with $x\neq t.$ Taking the modulus in (\ref{e.ope.4}) we have% \begin{align} \left\vert \frac{f\left( x\right) }{\exp \left( \alpha x\right) }-\frac{% f\left( t\right) }{\exp \left( \alpha t\right) }\right\vert & =\left\vert \int_{t}^{x}\frac{f^{\prime }\left( s\right) -\alpha f\left( s\right) }{\exp \left( \alpha s\right) }ds\right\vert \label{e.ope.5} \\ & \leq \left\vert \int_{t}^{x}\frac{\left\vert f^{\prime }\left( s\right) -\alpha f\left( s\right) \right\vert }{\left\vert \exp \left( \alpha s\right) \right\vert }ds\right\vert :=I \notag \end{align}% and utilizing H\"{o}lder's integral inequality we deduce% \begin{align} I& \leq \left\{ \begin{array}{ll} \sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\vert f^{\prime }\left( s\right) -\alpha f\left( s\right) \right\vert \left\vert \int_{t}^{x}\frac{1}{\left\vert \exp \left( \alpha s\right) \right\vert }% ds\right\vert , & \\ & \\ \left\vert \int_{t}^{x}\left\vert f^{\prime }\left( s\right) -\alpha f\left( s\right) \right\vert ^{p}ds\right\vert ^{1/p}\left\vert \int_{t}^{x}\frac{1}{% \left\vert \exp \left( \alpha s\right) \right\vert ^{q}}ds\right\vert ^{1/q}, & \\ & \\ \left\vert \int_{t}^{x}\left\vert f^{\prime }\left( s\right) -\alpha f\left( s\right) \right\vert ds\right\vert \sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\{ \frac{1}{\left\vert \exp \left( \alpha s\right) \right\vert }\right\} , & \end{array}% \right. \label{e.ope.5.1} \\ & \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-\alpha f\right\Vert _{\infty }\left\vert \int_{t}^{x}% \frac{1}{\left\vert \exp \left( \alpha s\right) \right\vert }ds\right\vert , & \\ & \\ \left\Vert f^{\prime }-\alpha f\right\Vert _{p}\left\vert \int_{t}^{x}\frac{1% }{\left\vert \exp \left( \alpha s\right) \right\vert ^{q}}ds\right\vert ^{1/q}, & \\ & \\ \left\Vert f^{\prime }-\alpha f\right\Vert _{1}\sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\{ \frac{1}{\left\vert \exp \left( \alpha s\right) \right\vert }\right\} . & \end{array}% \right. \notag \end{align}% Now, since $\alpha ={\rm Re}\left( \alpha \right) +i{\rm Im}\left( \alpha \right) $ and $s\in \left[ a,b\right] $, then% \begin{equation*} \left\vert \exp \left( \alpha s\right) \right\vert =\exp \left( s{\rm Re}% \left( \alpha \right) \right) . \end{equation*}% We have% \begin{equation*} \int_{t}^{x}\frac{1}{\left\vert \exp \left( \alpha s\right) \right\vert }ds=% {\rm Re}\left( \alpha \right) \left[ \frac{1}{\exp \left( t{\rm Re}\left( \alpha \right) \right) }-\frac{1}{\exp \left( x{\rm Re}\left( \alpha \right) \right) }\right] \end{equation*}% and by (\ref{e.ope.5}) and (\ref{e.ope.5.1}) we get% \begin{equation*} \left\vert \frac{f\left( x\right) }{\exp \left( \alpha x\right) }-\frac{% f\left( t\right) }{\exp \left( \alpha t\right) }\right\vert \leq \left\Vert f^{\prime }-\alpha f\right\Vert _{\infty }\left\vert {\rm Re}\left( \alpha \right) \right\vert \left\vert \frac{1}{\exp \left( t{\rm Re}\left( \alpha \right) \right) }-\frac{1}{\exp \left( x{\rm Re}\left( \alpha \right) \right) }\right\vert \end{equation*}% and the first part of (\ref{e.ope.3}) is proved. We have% \begin{equation*} \int_{t}^{x}\frac{1}{\left\vert \exp \left( \alpha s\right) \right\vert ^{q}}% ds=q{\rm Re}\left( \alpha \right) \left[ \frac{1}{\exp \left( tq{\rm Re}% \left( \alpha \right) \right) }-\frac{1}{\exp \left( xq{\rm Re}\left( \alpha \right) \right) }\right] \end{equation*}% and by (\ref{e.ope.5}) and (\ref{e.ope.5.1}) we get the second part of (\ref% {e.ope.3}). We have \begin{equation*} \sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\{ \frac{% 1}{\left\vert \exp \left( \alpha s\right) \right\vert }\right\} =\frac{1}{% \min \left\{ \exp \left( t{\rm Re}\left( \alpha \right) \right) ,\exp \left( x{\rm Re}\left( \alpha \right) \right) \right\} } \end{equation*}% and by (\ref{e.ope.5}) and (\ref{e.ope.5.1}) we get the last part of (\ref% {e.ope.3}). The inequality (\ref{e.ope.3.a}) follows by (\ref{e.ope.3}) on multiplying with $\left\vert \exp \left( \alpha x\right) \exp \left( \alpha t\right) \right\vert $ and performing the required calculation. \end{proof} The following particular case is of interest. \begin{corollary} \label{c.ope.2}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] .$ Then for any $t,x\in \left[ a,b\right] $ we have% \begin{multline} \left\vert \frac{f\left( x\right) }{\exp \left( x\right) }-\frac{f\left( t\right) }{\exp \left( t\right) }\right\vert \label{e.ope.6} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-f\right\Vert _{\infty }\left\vert \frac{1}{\exp \left( t\right) }-\frac{1}{\exp \left( x\right) }\right\vert & \begin{array}{l} \text{if }f^{\prime }-f \\ \in L_{\infty }\left[ a,b\right] ,% \end{array} \\ & \\ q^{1/q}\left\Vert f^{\prime }-f\right\Vert _{p}\left\vert \frac{1}{\exp \left( tq\right) }-\frac{1}{\exp \left( xq\right) }\right\vert ^{1/q} & \begin{array}{l} \text{if }f^{\prime }-f \\ \in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }-f\right\Vert _{1}\frac{1}{\min \left\{ \exp \left( t\right) ,\exp \left( x\right) \right\} }, & \end{array}% \right. \end{multline}% or, equivalently% \begin{multline} \left\vert \exp \left( t\right) f\left( x\right) -f\left( t\right) \exp \left( x\right) \right\vert \label{e.ope.7} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-f\right\Vert _{\infty }\left\vert \exp \left( x\right) -\exp \left( t\right) \right\vert & \begin{array}{l} \text{if }f^{\prime }-f \\ \in L_{\infty }\left[ a,b\right] ,% \end{array} \\ & \\ q^{1/q}\left\Vert f^{\prime }-f\right\Vert _{p}\left\vert \exp \left( xq\right) -\exp \left( tq\right) \right\vert ^{1/q} & \begin{array}{l} \text{if }f^{\prime }-f \\ \in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }-f\right\Vert _{1}\max \left\{ \exp \left( t\right) ,\exp \left( x\right) \right\} . & \end{array}% \right. \end{multline} \end{corollary} \begin{remark} \label{r.ope.1}If ${\rm Re}\left( \alpha \right) =0$ then the inequality (% \ref{e.ope.5.1}) becomes \begin{align*} I& \leq \left\{ \begin{array}{ll} \sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\vert f^{\prime }\left( s\right) -i{\rm Im}\left( \alpha \right) f\left( s\right) \right\vert \left\vert \int_{t}^{x}\frac{1}{\left\vert \exp \left( i{\rm Im}% \left( \alpha \right) s\right) \right\vert }ds\right\vert , & \\ & \\ \left\vert \int_{t}^{x}\left\vert f^{\prime }\left( s\right) -i{\rm Im}% \left( \alpha \right) f\left( s\right) \right\vert ^{p}ds\right\vert ^{1/p}\left\vert \int_{t}^{x}\frac{1}{\left\vert \exp \left( i{\rm Im}% \left( \alpha \right) s\right) \right\vert ^{q}}ds\right\vert ^{1/q}, & \\ & \\ \left\vert \int_{t}^{x}\left\vert f^{\prime }\left( s\right) -i{\rm Im}% \left( \alpha \right) f\left( s\right) \right\vert ds\right\vert \sup_{s\in % \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\{ \frac{1}{% \left\vert \exp \left( i{\rm Im}\left( \alpha \right) s\right) \right\vert }% \right\} , & \end{array}% \right. \\ & \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{\infty }\left\vert \int_{t}^{x}ds\right\vert , & \\ & \\ \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{p}\left\vert \int_{t}^{x}ds\right\vert ^{1/q}, & \\ & \\ \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{1}, & \end{array}% \right. =\left\{ \begin{array}{ll} \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{\infty }\left\vert x-t\right\vert , & \\ & \\ \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{p}\left\vert x-t\right\vert ^{1/q}, & \\ & \\ \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{1}. & \end{array}% \right. \end{align*}% Therefore we have% \begin{equation} \left\vert \frac{f\left( x\right) }{\exp \left( i{\rm Im}\left( \alpha \right) x\right) }-\frac{f\left( t\right) }{\exp \left( i{\rm Im}\left( \alpha \right) t\right) }\right\vert \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{\infty }\left\vert x-t\right\vert , & \\ & \\ \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{p}\left\vert x-t\right\vert ^{1/q}, & \\ & \\ \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{1}, & \end{array}% \right. \label{e.ope.8} \end{equation}% or, equivalently% \begin{eqnarray} &&\left\vert \exp \left( i{\rm Im}\left( \alpha \right) t\right) f\left( x\right) -f\left( t\right) \exp \left( i{\rm Im}\left( \alpha \right) x\right) \right\vert \label{e.ope.9} \\ &\leq &\left\{ \begin{array}{ll} \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{\infty }\left\vert x-t\right\vert , & \\ & \\ \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{p}\left\vert x-t\right\vert ^{1/q}, & \\ & \\ \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{1} & \end{array}% \right. \notag \end{eqnarray}% for any $t,x\in \left[ a,b\right] .$ In particular, we have% \begin{equation} \left\vert \frac{f\left( x\right) }{\exp \left( ix\right) }-\frac{f\left( t\right) }{\exp \left( it\right) }\right\vert \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-if\right\Vert _{\infty }\left\vert x-t\right\vert , & \\ & \\ \left\Vert f^{\prime }-if\right\Vert _{p}\left\vert x-t\right\vert ^{1/q}, & \\ & \\ \left\Vert f^{\prime }-if\right\Vert _{1}, & \end{array}% \right. \label{e.ope.10} \end{equation}% or, equivalently% \begin{equation} \left\vert \exp \left( it\right) f\left( x\right) -f\left( t\right) \exp \left( ix\right) \right\vert \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-if\right\Vert _{\infty }\left\vert x-t\right\vert , & \\ & \\ \left\Vert f^{\prime }-if\right\Vert _{p}\left\vert x-t\right\vert ^{1/q}, & \\ & \\ \left\Vert f^{\prime }-if\right\Vert _{1}, & \end{array}% \right. \label{e.ope.11} \end{equation}% for any $t,x\in \left[ a,b\right] .$ \end{remark} \subsection{Inequalities of Ostrowski Type} The following result holds: \begin{theorem}[Dragomir, 2013 \protect\cite{opeSSD1}] \label{t.ope.1}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] $ and $% \alpha \in \mathbb{C}$ with ${\rm Re}\left( \alpha \right) >0.$ Then for any $x\in \left[ a,b\right] $ we have% \begin{multline} \left\vert f\left( x\right) \frac{\exp \left( \alpha b\right) -\exp \left( \alpha a\right) }{\alpha }-\exp \left( \alpha x\right) \int_{a}^{b}f\left( t\right) dt\right\vert \label{e.ope.12} \\ \\ \leq \left\{ \begin{array}{ll} \left\vert {\rm Re}\left( \alpha \right) \right\vert \left\Vert f^{\prime }-\alpha f\right\Vert _{\infty }B_{1}(a,b,x,\alpha ) & \begin{array}{l} \text{if }{\small f}^{\prime }{\small -\alpha f} \\ {\small \in L}_{\infty }\left[ a,b\right] ,% \end{array} \\ & \\ \begin{array}{l} q^{1/q}\left\vert {\rm Re}\left( \alpha \right) \right\vert ^{1/q}\left( b-a\right) ^{1/p} \\ \times \left\Vert f^{\prime }-\alpha f\right\Vert _{p}\left\vert B_{q}(a,b,x,\alpha )\right\vert ^{1/q}% \end{array} & \begin{array}{l} \text{if }{\small f}^{\prime }{\small -\alpha f} \\ {\small \in L}_{p}\left[ a,b\right] \\ \begin{array}{c} {\small p>1,} \\ \frac{1}{p}{\small +}\frac{1}{q}{\small =1,}% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }-\alpha f\right\Vert _{1}B_{\infty }(a,b,x,\alpha ) & \end{array}% \right. \end{multline}% where% \begin{multline*} B_{q}(a,b,x,\alpha ):=2\left[ \exp \left( xq{\rm Re}\left( \alpha \right) \right) \left( x-\frac{a+b}{2}\right) \right. \\ +\left. \frac{1}{q{\rm Re}\left( \alpha \right) }\left( \frac{\exp \left( bq% {\rm Re}\left( \alpha \right) \right) +\exp \left( aq{\rm Re}\left( \alpha \right) \right) }{2}-\exp \left( xq{\rm Re}\left( \alpha \right) \right) \right) \right] \end{multline*}% for $q\geq 1$ and \begin{equation*} B_{\infty }(a,b,x,\alpha ):=\exp \left( x{\rm Re}\left( \alpha \right) \right) \left( x-a\right) +\frac{\exp \left( b{\rm Re}\left( \alpha \right) \right) -\exp \left( x{\rm Re}\left( \alpha \right) \right) }{{\rm Re}% \left( \alpha \right) }. \end{equation*} \end{theorem} \begin{proof} Utilising the first inequality in (\ref{e.ope.3.a}) we have% \begin{align} & \left\vert f\left( x\right) \int_{a}^{b}\exp \left( \alpha t\right) dt-\exp \left( \alpha x\right) \int_{a}^{b}f\left( t\right) dt\right\vert \label{e.ope.13} \\ & \leq \int_{a}^{b}\left\vert \exp \left( \alpha t\right) f\left( x\right) -f\left( t\right) \exp \left( \alpha x\right) \right\vert dt \notag \\ & \leq \left\vert {\rm Re}\left( \alpha \right) \right\vert \left\Vert f^{\prime }-\alpha f\right\Vert _{\infty }\int_{a}^{b}\left\vert \exp \left( x{\rm Re}\left( \alpha \right) \right) -\exp \left( t{\rm Re}\left( \alpha \right) \right) \right\vert dt \notag \end{align}% for any $x\in \left[ a,b\right] .$ Observe that, since ${\rm Re}\left( \alpha \right) >0,$ then \begin{align*} & \int_{a}^{b}\left\vert \exp \left( x{\rm Re}\left( \alpha \right) \right) -\exp \left( t{\rm Re}\left( \alpha \right) \right) \right\vert dt \\ & =2\left[ \exp \left( x{\rm Re}\left( \alpha \right) \right) \left( x-% \frac{a+b}{2}\right) \right. \\ & +\left. \frac{1}{{\rm Re}\left( \alpha \right) }\left( \frac{\exp \left( b% {\rm Re}\left( \alpha \right) \right) +\exp \left( a{\rm Re}\left( \alpha \right) \right) }{2}-\exp \left( x{\rm Re}\left( \alpha \right) \right) \right) \right] \end{align*}% for any $x\in \left[ a,b\right] .$ Also% \begin{align*} & f\left( x\right) \int_{a}^{b}\exp \left( \alpha t\right) dt-\exp \left( \alpha x\right) \int_{a}^{b}f\left( t\right) dt \\ & =f\left( x\right) \frac{\exp \left( \alpha b\right) -\exp \left( \alpha a\right) }{\alpha }-\exp \left( \alpha x\right) \int_{a}^{b}f\left( t\right) dt \end{align*}% for any $x\in \left[ a,b\right] $ and by (\ref{e.ope.13}) we get the first inequality in (\ref{e.ope.12}). Using the second inequality in (\ref{e.ope.3.a}) we have% \begin{align} & \left\vert f\left( x\right) \int_{a}^{b}\exp \left( \alpha t\right) dt-\exp \left( \alpha x\right) \int_{a}^{b}f\left( t\right) dt\right\vert \label{e.ope.14} \\ & \leq \int_{a}^{b}\left\vert \exp \left( \alpha t\right) f\left( x\right) -f\left( t\right) \exp \left( \alpha x\right) \right\vert dt \notag \\ & \leq q^{1/q}\left\vert {\rm Re}\left( \alpha \right) \right\vert ^{1/q}\left\Vert f^{\prime }-\alpha f\right\Vert _{p}\int_{a}^{b}\left\vert \exp \left( xq{\rm Re}\left( \alpha \right) \right) -\exp \left( tq{\rm Re}% \left( \alpha \right) \right) \right\vert ^{1/q}dt \notag \end{align}% for any $x\in \left[ a,b\right] .$ By H\"{o}lder's integral inequality we also have% \begin{align*} & \int_{a}^{b}\left\vert \exp \left( xq{\rm Re}\left( \alpha \right) \right) -\exp \left( tq{\rm Re}\left( \alpha \right) \right) \right\vert ^{1/q}dt \\ & \leq \left( b-a\right) ^{1/p}\left[ \int_{a}^{b}\left\vert \exp \left( xq% {\rm Re}\left( \alpha \right) \right) -\exp \left( tq{\rm Re}\left( \alpha \right) \right) \right\vert dt\right] ^{1/q}, \end{align*}% for any $x\in \left[ a,b\right] .$ Observe that, as above, we have% \begin{align*} & \int_{a}^{b}\left\vert \exp \left( xq{\rm Re}\left( \alpha \right) \right) -\exp \left( tq{\rm Re}\left( \alpha \right) \right) \right\vert dt \\ & =2\left[ \exp \left( xq{\rm Re}\left( \alpha \right) \right) \left( x-% \frac{a+b}{2}\right) \right. \\ & +\left. \frac{1}{q{\rm Re}\left( \alpha \right) }\left( \frac{\exp \left( bq{\rm Re}\left( \alpha \right) \right) +\exp \left( aq{\rm Re}\left( \alpha \right) \right) }{2}-\exp \left( xq{\rm Re}\left( \alpha \right) \right) \right) \right] \\ & =B_{q}(a,b,x,\alpha ) \end{align*}% for any $x\in \left[ a,b\right] $ and by (\ref{e.ope.14}) we get the second part of (\ref{e.ope.12}). Using the third inequality in (\ref{e.ope.3.a}) we have% \begin{align} & \left\vert f\left( x\right) \int_{a}^{b}\exp \left( \alpha t\right) dt-\exp \left( \alpha x\right) \int_{a}^{b}f\left( t\right) dt\right\vert \label{e.ope.15} \\ & \leq \int_{a}^{b}\left\vert \exp \left( \alpha t\right) f\left( x\right) -f\left( t\right) \exp \left( \alpha x\right) \right\vert dt \notag \\ & \leq \left\Vert f^{\prime }-\alpha f\right\Vert _{1}\int_{a}^{b}\max \left\{ \exp \left( t{\rm Re}\left( \alpha \right) \right) ,\exp \left( x% {\rm Re}\left( \alpha \right) \right) \right\} dt \notag \end{align}% for any $x\in \left[ a,b\right] .$ Observe that,% \begin{align*} & \int_{a}^{b}\max \left\{ \exp \left( t{\rm Re}\left( \alpha \right) \right) ,\exp \left( x{\rm Re}\left( \alpha \right) \right) \right\} dt \\ & =\int_{a}^{x}\max \left\{ \exp \left( t{\rm Re}\left( \alpha \right) \right) ,\exp \left( x{\rm Re}\left( \alpha \right) \right) \right\} dt \\ & +\int_{x}^{b}\max \left\{ \exp \left( t{\rm Re}\left( \alpha \right) \right) ,\exp \left( x{\rm Re}\left( \alpha \right) \right) \right\} dt \\ & =\int_{a}^{x}\exp \left( x{\rm Re}\left( \alpha \right) \right) dt+\int_{x}^{b}\exp \left( t{\rm Re}\left( \alpha \right) \right) dt= \\ & =\exp \left( x{\rm Re}\left( \alpha \right) \right) \left( x-a\right) +% \frac{\exp \left( b{\rm Re}\left( \alpha \right) \right) -\exp \left( x% {\rm Re}\left( \alpha \right) \right) }{{\rm Re}\left( \alpha \right) } \end{align*}% and by (\ref{e.ope.15}) we get the third part of (\ref{e.ope.12}). \end{proof} \begin{remark} \label{r.ope.2}If ${\rm Re}\left( \alpha \right) <0,$ then a similar result may be stated. However the details are left to the interested reader. \end{remark} \begin{corollary} \label{c.ope.3}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] $. Then for any $x\in \left[ a,b\right] $ we have% \begin{multline} \left\vert f\left( x\right) \left[ \exp \left( b\right) -\exp \left( a\right) \right] -\exp \left( x\right) \int_{a}^{b}f\left( t\right) dt\right\vert \label{e.ope.15.a} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-f\right\Vert _{\infty }B_{1}(a,b,x) & \text{if }% {\small f}^{\prime }{\small -f\in L}_{\infty }\left[ a,b\right] , \\ & \\ \begin{array}{l} q^{1/q}\left( b-a\right) ^{1/p}\left\Vert f^{\prime }-f\right\Vert _{p} \\ \times \left\vert B_{q}(a,b,x)\right\vert ^{1/q}% \end{array} & \begin{array}{l} \text{if }{\small f}^{\prime }{\small -f\in L}_{p}\left[ a,b\right] \\ \begin{array}{c} {\small p>1,} \\ \frac{1}{p}{\small +}\frac{1}{q}{\small =1,}% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }-f\right\Vert _{1}B_{\infty }(a,b,x) & \end{array}% \right. \end{multline}% where% \begin{align*} & B_{q}(a,b,x) \\ & :=2\left[ \left( x-\frac{a+b}{2}\right) \exp \left( xq\right) +\frac{1}{q}% \left( \frac{\exp \left( bq\right) +\exp \left( aq\right) }{2}-\exp \left( xq\right) \right) \right] \end{align*}% for $q\geq 1$ and \begin{equation*} B_{\infty }(a,b,x):=\left( x-a\right) \exp \left( x\right) +\exp \left( b\right) -\exp \left( x\right) . \end{equation*} \end{corollary} \begin{remark} \label{r.ope.3}The midpoint case is as follows:% \begin{multline} \left\vert f\left( \frac{a+b}{2}\right) \left[ \exp \left( b\right) -\exp \left( a\right) \right] -\exp \left( \frac{a+b}{2}\right) \int_{a}^{b}f\left( t\right) dt\right\vert \label{e.ope.15.b} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-f\right\Vert _{\infty }B_{1}(a,b) & \text{if }{\small % f}^{\prime }{\small -f\in L}_{\infty }\left[ a,b\right] , \\ & \\ \begin{array}{l} q^{1/q}\left( b-a\right) ^{1/p}\left\Vert f^{\prime }-f\right\Vert _{p} \\ \times \left\vert B_{q}(a,b)\right\vert ^{1/q}% \end{array} & \begin{array}{l} \text{if }{\small f}^{\prime }{\small -f\in L}_{p}\left[ a,b\right] \\ \begin{array}{c} {\small p>1,} \\ \frac{1}{p}{\small +}\frac{1}{q}{\small =1,}% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }-f\right\Vert _{1}B_{\infty }(a,b) & \end{array}% \right. \end{multline}% where% \begin{equation*} B_{q}(a,b,x):=\frac{2}{q}\left( \frac{\exp \left( bq\right) +\exp \left( aq\right) }{2}-\exp \left( \frac{a+b}{2}q\right) \right) \end{equation*}% for $q\geq 1$ and \begin{equation*} B_{\infty }(a,b):=\frac{b-a}{2}\exp \left( \frac{a+b}{2}\right) +\exp \left( b\right) -\exp \left( \frac{a+b}{2}\right) . \end{equation*} \end{remark} The case ${\rm Re}\left( \alpha \right) =0$ is different and may be stated as follows. \begin{theorem}[Dragomir, 2013 \protect\cite{opeSSD1}] \label{t.ope.2}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] $ and $% \alpha \in \mathbb{C}$ with ${\rm Re}\left( \alpha \right) =0$ and ${\rm Im} \left( \alpha \right) \neq 0.$ Then for any $x\in \left[ a,b\right] $ we have% \begin{multline} \left\vert f\left( x\right) \frac{\exp \left( i{\rm Im}\left( \alpha \right) b\right) -\exp \left( i{\rm Im}\left( \alpha \right) a\right) }{i% {\rm Im}\left( \alpha \right) }-\exp \left( i{\rm Im}\left( \alpha \right) x\right) \int_{a}^{b}f\left( t\right) dt\right\vert \label{e.ope.16} \\ \\ \leq \left\{ \begin{array}{ll} \begin{array}{l} \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{\infty } \\ \left[ \frac{1}{4}+\left( \frac{x-\frac{a+b}{2}}{b-a}\right) ^{2}\right] \left( b-a\right) ^{2}% \end{array} & \begin{array}{l} \text{if }{\small f}^{\prime }{\small -i{\rm Im}\left( \alpha \right) f} \\ {\small \in L}_{\infty }\left[ a,b\right] ,% \end{array} \\ & \\ \begin{array}{l} \frac{q}{q+1}\left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{p} \\ \times \left[ \left( \frac{b-x}{b-a}\right) ^{\frac{q+1}{q}}+\left( \frac{x-a% }{b-a}\right) ^{\frac{q+1}{q}}\right] \left( b-a\right) ^{\frac{q+1}{q}}% \end{array} & \begin{array}{l} \text{if }{\small f}^{\prime }{\small -i{\rm Im}\left( \alpha \right) f} \\ {\small \in L}_{p}\left[ a,b\right] \\ \begin{array}{c} {\small p>1,} \\ \frac{1}{p}{\small +}\frac{1}{q}{\small =1,}% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{1}\left( b-a\right) . & \end{array}% \right. \end{multline} \end{theorem} \begin{proof} Utilizing the inequality (\ref{e.ope.9}) we have% \begin{align} & \left\vert f\left( x\right) \frac{\exp \left( i{\rm Im}\left( \alpha \right) b\right) -\exp \left( i{\rm Im}\left( \alpha \right) a\right) }{i% {\rm Im}\left( \alpha \right) }-\exp \left( i{\rm Im}\left( \alpha \right) x\right) \int_{a}^{b}f\left( t\right) dt\right\vert \label{e.ope.17} \\ & \notag \\ & \leq \int_{a}^{b}\left\vert \exp \left( i{\rm Im}\left( \alpha \right) t\right) f\left( x\right) -f\left( t\right) \exp \left( i{\rm Im}\left( \alpha \right) x\right) \right\vert dt \notag \\ & \notag \\ & \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{\infty }\int_{a}^{b}\left\vert x-t\right\vert dt, & \\ & \\ \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{p}\int_{a}^{b}\left\vert x-t\right\vert ^{1/q}dt, & \\ & \\ \left\Vert f^{\prime }-i{\rm Im}\left( \alpha \right) f\right\Vert _{1}\int_{a}^{b}dt. & \end{array}% \right. \notag \end{align}% Since% \begin{equation*} \int_{a}^{b}\left\vert x-t\right\vert dt=\left[ \frac{1}{4}+\left( \frac{x-% \frac{a+b}{2}}{b-a}\right) ^{2}\right] \left( b-a\right) ^{2} \end{equation*}% and% \begin{equation*} \int_{a}^{b}\left\vert x-t\right\vert ^{1/q}dt=\frac{q}{q+1}\left[ \left( \frac{b-x}{b-a}\right) ^{\frac{q+1}{q}}+\left( \frac{x-a}{b-a}\right) ^{% \frac{q+1}{q}}\right] \left( b-a\right) ^{\frac{q+1}{q}}, \end{equation*}% then we get from (\ref{e.ope.17}) the desired result (\ref{e.ope.16}). \end{proof} \begin{corollary} \label{c.ope.4}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] .$ Then for any $x\in \left[ a,b\right] $ we have% \begin{multline} \left\vert f\left( x\right) \frac{\exp \left( ib\right) -\exp \left( ia\right) }{i}-\exp \left( ix\right) \int_{a}^{b}f\left( t\right) dt\right\vert \label{e.ope.18} \\ \\ \leq \left\{ \begin{array}{ll} \begin{array}{l} \left\Vert f^{\prime }-if\right\Vert _{\infty } \\ \times \left[ \frac{1}{4}+\left( \frac{x-\frac{a+b}{2}}{b-a}\right) ^{2}% \right] \left( b-a\right) ^{2}% \end{array} & \begin{array}{l} \text{if }{\small f}^{\prime }{\small -if} \\ {\small \in L}_{\infty }\left[ a,b\right] ,% \end{array} \\ & \\ \begin{array}{l} \frac{q}{q+1}\left\Vert f^{\prime }-if\right\Vert _{p} \\ \times \left[ \left( \frac{b-x}{b-a}\right) ^{\frac{q+1}{q}}+\left( \frac{x-a% }{b-a}\right) ^{\frac{q+1}{q}}\right] \left( b-a\right) ^{\frac{q+1}{q}}% \end{array} & \begin{array}{l} \text{if }{\small f}^{\prime }{\small -if} \\ {\small \in L}_{p}\left[ a,b\right] \\ \begin{array}{c} {\small p>1,} \\ \frac{1}{p}{\small +}\frac{1}{q}{\small =1,}% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }-if\right\Vert _{1}\left( b-a\right) . & \end{array}% \right. \end{multline} \end{corollary} \begin{remark} \label{r.ope.4}The midpoint case is as follows% \begin{align} & \left\vert f\left( \frac{a+b}{2}\right) \frac{\exp \left( ib\right) -\exp \left( ia\right) }{i}-\exp \left( i\frac{a+b}{2}\right) \int_{a}^{b}f\left( t\right) dt\right\vert \label{e.ope.19} \\ & \notag \\ & \leq \left\{ \begin{array}{l} \frac{1}{4}\left\Vert f^{\prime }-if\right\Vert _{\infty }\left( b-a\right) ^{2},\text{ if }{\small f}^{\prime }{\small -if\in L}_{\infty }\left[ a,b% \right] , \\ \\ \frac{q}{\left( q+1\right) 2^{1/q}}\left\Vert f^{\prime }-if\right\Vert _{p}\left( b-a\right) ^{\frac{q+1}{q}},\text{ if }{\small f}^{\prime }% {\small -if\in L}_{p}\left[ a,b\right] .% \end{array}% \right. \notag \end{align} \end{remark} Similar inequalities may be stated if one uses (\ref{e.ope.3}) and integrates over $t$ on $\left[ a,b\right] .$ The details are left to the interested reader. \section{Ostrowski Via a Two Functions Pompeiu's Inequality} \subsection{A General Pompeiu's Inequality} We start with the following generalization of Pompeiu's inequality: \begin{theorem}[Dragomir, 2013 \protect\cite{opgSSD1}] \label{t.opg.2}Let $f,g:\left[ a,b\right] \rightarrow \mathbb{C}$ be absolutely continuous functions on the interval $\left[ a,b\right] $ with $% g\left( t\right) \neq 0$ for all $t\in \left[ a,b\right] .$ Then for any $% t,x\in \left[ a,b\right] $ we have% \begin{multline} \left\vert \frac{f\left( x\right) }{g\left( x\right) }-\frac{f\left( t\right) }{g\left( t\right) }\right\vert \label{e.opg.3} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{\infty }\left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}% ds\right\vert & \text{if }f^{\prime }g-fg^{\prime }\in L_{\infty }\left[ a,b% \right] , \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{p}\left\vert \int_{t}^{x}% \frac{1}{\left\vert g\left( s\right) \right\vert ^{2q}}ds\right\vert ^{1/q} & \begin{array}{l} \text{if }f^{\prime }g-fg^{\prime }\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{1}\sup_{s\in \left[ t,x% \right] \left( \left[ x,t\right] \right) }\left\{ \frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}\right\} & \end{array}% \right. \end{multline}% or, equivalently% \begin{multline} \left\vert g\left( t\right) f\left( x\right) -f\left( t\right) g\left( x\right) \right\vert \label{e.opg.3.a} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{\infty }\left\vert g\left( t\right) g\left( x\right) \right\vert \left\vert \int_{t}^{x}\frac{1}{% \left\vert g\left( s\right) \right\vert ^{2}}ds\right\vert & \text{if }% f^{\prime }g-fg^{\prime }\in L_{\infty }\left[ a,b\right] , \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{p}\left\vert g\left( t\right) g\left( x\right) \right\vert \left\vert \int_{t}^{x}\frac{1}{% \left\vert g\left( s\right) \right\vert ^{2q}}ds\right\vert ^{1/q} & \begin{array}{l} \text{if }f^{\prime }g-fg^{\prime }\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{1}\left\vert g\left( t\right) g\left( x\right) \right\vert \sup_{s\in \left[ t,x\right] \left( % \left[ x,t\right] \right) }\left\{ \frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}\right\} . & \end{array}% \right. \end{multline} \end{theorem} \begin{proof} If $f$ and $g$ are absolutely continuous and $g\left( t\right) \neq 0$ for all $t\in \left[ a,b\right] $, then $f/g$ is absolutely continuous on the interval $\left[ a,b\right] $ and \begin{equation*} \int_{t}^{x}\left( \frac{f\left( s\right) }{g\left( s\right) }\right) ^{\prime }ds=\frac{f\left( x\right) }{g\left( x\right) }-\frac{f\left( t\right) }{g\left( t\right) } \end{equation*}% for any $t,x\in \left[ a,b\right] $ with $x\neq t.$ Since% \begin{equation*} \int_{t}^{x}\left( \frac{f\left( s\right) }{g\left( s\right) }\right) ^{\prime }ds=\int_{t}^{x}\frac{f^{\prime }\left( s\right) g\left( s\right) -f\left( s\right) g^{\prime }\left( s\right) }{g^{2}\left( s\right) }ds, \end{equation*}% then we get the following identity% \begin{equation} \frac{f\left( x\right) }{g\left( x\right) }-\frac{f\left( t\right) }{g\left( t\right) }=\int_{t}^{x}\frac{f^{\prime }\left( s\right) g\left( s\right) -f\left( s\right) g^{\prime }\left( s\right) }{g^{2}\left( s\right) }ds \label{e.opg.4} \end{equation}% for any $t,x\in \left[ a,b\right] .$ Taking the modulus in (\ref{e.opg.4}) we have% \begin{align} \left\vert \frac{f\left( x\right) }{g\left( x\right) }-\frac{f\left( t\right) }{g\left( t\right) }\right\vert & =\left\vert \int_{t}^{x}\frac{% f^{\prime }\left( s\right) g\left( s\right) -f\left( s\right) g^{\prime }\left( s\right) }{g^{2}\left( s\right) }ds\right\vert \label{e.opg.5} \\ & \leq \left\vert \int_{t}^{x}\frac{\left\vert f^{\prime }\left( s\right) g\left( s\right) -f\left( s\right) g^{\prime }\left( s\right) \right\vert }{% \left\vert g\left( s\right) \right\vert ^{2}}ds\right\vert :=I \notag \end{align}% and utilizing H\"{o}lder's integral inequality we deduce% \begin{align*} I& \leq \left\{ \begin{array}{ll} \sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\vert f^{\prime }\left( s\right) g\left( s\right) -f\left( s\right) g^{\prime }\left( s\right) \right\vert \left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}ds\right\vert , & \\ & \\ \left\vert \int_{t}^{x}\left\vert f^{\prime }\left( s\right) g\left( s\right) -f\left( s\right) g^{\prime }\left( s\right) \right\vert ^{p}ds\right\vert ^{1/p}\left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2q}}ds\right\vert ^{1/q} & \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array} \\ & \\ \left\vert \int_{t}^{x}\left\vert f^{\prime }\left( s\right) g\left( s\right) -f\left( s\right) g^{\prime }\left( s\right) \right\vert ds\right\vert \sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\{ \frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}\right\} , & \end{array}% \right. \\ & \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{\infty }\left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}% ds\right\vert , & \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{p}\left\vert \int_{t}^{x}% \frac{1}{\left\vert g\left( s\right) \right\vert ^{2q}}ds\right\vert ^{1/q} & \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array} \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{1}\sup_{s\in \left[ t,x% \right] \left( \left[ x,t\right] \right) }\left\{ \frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}\right\} & \end{array}% \right. \end{align*}% and the inequality (\ref{e.opg.3}) is proved. \end{proof} The following particular case extends Pompeiu's inequality to other $p$% -norms than $p=\infty $ obtained in (\ref{c.opg.2}). \begin{corollary} \label{c.opg.2}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] $ with $% b>a>$ $0.$ Then for any $t,x\in \left[ a,b\right] $ we have% \begin{multline} \left\vert \frac{f\left( x\right) }{x}-\frac{f\left( t\right) }{t}\right\vert \label{e.opg.6} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f-\ell f^{\prime }\right\Vert _{\infty }\left\vert \frac{1}{t}-% \frac{1}{x}\right\vert & \text{if }f-\ell f^{\prime }\in L_{\infty }\left[ a,b\right] , \\ & \\ \frac{1}{2q-1}\left\Vert f-\ell f^{\prime }\right\Vert _{p}\left\vert \frac{1% }{t^{2q-1}}-\frac{1}{x^{2q-1}}\right\vert ^{1/q} & \begin{array}{c} \text{if }f-\ell f^{\prime }\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array}% \end{array} \\ & \\ \left\Vert f-\ell f^{\prime }\right\Vert _{1}\frac{1}{\min \left\{ t^{2},x^{2}\right\} } & \end{array}% \right. \end{multline}% or, equivalently% \begin{multline} \left\vert tf\left( x\right) -xf\left( t\right) \right\vert \label{e.opg.7} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f-\ell f^{\prime }\right\Vert _{\infty }\left\vert x-t\right\vert & \text{if }f-\ell f^{\prime }\in L_{\infty }\left[ a,b\right] , \\ & \\ \frac{1}{2q-1}\left\Vert f-\ell f^{\prime }\right\Vert _{p}\left\vert \frac{% x^{q}}{t^{q-1}}-\frac{t^{q}}{x^{q-1}}\right\vert ^{1/q} & \begin{array}{l} \text{if }f-\ell f^{\prime }\in L_{p}\left[ a,b\right] \\ p>1,\frac{1}{p}+\frac{1}{q}=1,% \end{array} \\ & \\ \left\Vert f-\ell f^{\prime }\right\Vert _{1}\frac{\max \left\{ t,x\right\} }{\min \left\{ t,x\right\} }, & \end{array}% \right. \end{multline}% where $\ell \left( t\right) =t,t\in \left[ a,b\right] .$ \end{corollary} The proof follows by (\ref{e.opg.3}) for $g\left( t\right) =\ell \left( t\right) =t,$ $t\in \left[ a,b\right] .$ The general case for power functions is as follows. \begin{corollary} \label{c.opg.3}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] $ with $% b>a>$ $0.$ If $r\in \mathbb{R}$, $r\neq 0,$ then for any $t,x\in \left[ a,b% \right] $ we have% \begin{multline} \left\vert \frac{f\left( x\right) }{x^{r}}-\frac{f\left( t\right) }{t^{r}}% \right\vert \label{e.opg.8} \\ \\ \leq \left\{ \begin{array}{ll} \frac{1}{\left\vert r\right\vert }\left\Vert f^{\prime }\ell -rf\right\Vert _{\infty }\left\vert \frac{1}{x^{r}}-\frac{1}{t^{r}}\right\vert ,\text{ if }% f^{\prime }\ell -rf\in L_{\infty }\left[ a,b\right] , & \\ & \\ \begin{array}{l} \left\Vert f^{\prime }\ell -rf\right\Vert _{p} \\ \times \left\{ \begin{array}{l} \frac{1}{\left\vert 1-q\left( r+1\right) \right\vert }\left\vert \frac{1}{% x^{1-q\left( r+1\right) }}-\frac{1}{t^{1-q\left( r+1\right) }}\right\vert ,% \text{ for }r\neq -\frac{1}{p} \\ \\ \left\vert \ln x-\ln t\right\vert ,\text{ for }r=-\frac{1}{p}% \end{array}% \right. \\ \text{if }f^{\prime }\ell -rf\in L_{p}\left[ a,b\right] ,% \end{array} & \\ & \\ \left\Vert f^{\prime }\ell -rf\right\Vert _{1}\frac{1}{\min \left\{ x^{r+1},t^{r+1}\right\} }, & \end{array}% \right. \end{multline}% or, equivalently% \begin{multline} \left\vert t^{r}f\left( x\right) -x^{r}f\left( t\right) \right\vert \label{e.opg.9} \\ \\ \leq \left\{ \begin{array}{ll} \frac{1}{\left\vert r\right\vert }\left\Vert f^{\prime }\ell -rf\right\Vert _{\infty }\left\vert t^{r}-x^{r}\right\vert ,\text{if }f^{\prime }\ell -rf\in L_{\infty }\left[ a,b\right] , & \\ & \\ \begin{array}{l} \left\Vert f^{\prime }\ell -rf\right\Vert _{p} \\ \times \left\{ \begin{array}{l} \frac{1}{\left\vert 1-q\left( r+1\right) \right\vert }\left\vert \frac{t^{r}% }{x^{1-q\left( r+1\right) -r}}-\frac{x^{r}}{t^{1-q\left( r+1\right) -r}}% \right\vert ,\text{ for }r\neq -\frac{1}{p} \\ \\ t^{r}x^{r}\left\vert \ln x-\ln t\right\vert ,\text{ for }r=-\frac{1}{p}% \end{array}% \right. \\ \text{if }f^{\prime }\ell -rf\in L_{p}\left[ a,b\right] ,% \end{array} & \\ & \\ \left\Vert f^{\prime }\ell -rf\right\Vert _{1}\frac{t^{r}x^{r}}{\min \left\{ x^{r+1},t^{r+1}\right\} }, & \end{array}% \right. \end{multline}% where $p>1,\frac{1}{p}+\frac{1}{q}=1.$ \end{corollary} The proof follows by (\ref{e.opg.3}) for $g\left( t\right) =t^{r},$ $t\in % \left[ a,b\right] .$ The details for calculations are omitted. We have the following result for exponential. \begin{corollary} \label{c.opg.2.1}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] $ and $% \alpha \in \mathbb{R}$, $\alpha \neq 0.$ Then for any $t,x\in \left[ a,b% \right] $ we have% \begin{multline} \left\vert \frac{f\left( x\right) }{\exp \left( i\alpha x\right) }-\frac{% f\left( t\right) }{\exp \left( i\alpha t\right) }\right\vert \label{e.opg.10} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-i\alpha f\right\Vert _{\infty }\left\vert x-t\right\vert & \text{if }f^{\prime }-i\alpha f\in L_{\infty }\left[ a,b% \right] , \\ & \\ \left\Vert f^{\prime }-i\alpha f\right\Vert _{p}\left\vert x-t\right\vert ^{1/q} & \begin{array}{l} \text{if }f^{\prime }-i\alpha f\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }-i\alpha f\right\Vert _{1} & \end{array}% \right. \end{multline}% or, equivalently% \begin{multline} \left\vert \exp \left( i\alpha t\right) f\left( x\right) -f\left( t\right) \exp \left( i\alpha x\right) \right\vert \label{e.opg.11} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-i\alpha f\right\Vert _{\infty }\left\vert x-t\right\vert & \text{if }f^{\prime }-i\alpha f\in L_{\infty }\left[ a,b% \right] , \\ & \\ \left\Vert f^{\prime }-i\alpha f\right\Vert _{p}\left\vert x-t\right\vert ^{1/q} & \begin{array}{l} \text{if }f^{\prime }-i\alpha f\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }-i\alpha f\right\Vert _{1}. & \end{array}% \right. \end{multline} \end{corollary} \subsection{An Inequality Generalizing Ostrowski's} The following result holds: \begin{theorem}[Dragomir, 2013 \protect\cite{opgSSD1}] \label{t.opg.1}Let $f,g:\left[ a,b\right] \rightarrow \mathbb{C}$ be absolutely continuous functions on the interval $\left[ a,b\right] .$ If $% 01, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{1}\left( b-a\right) & \end{array}% \right. \end{multline}% for any $x\in \left[ a,b\right] .$ \end{theorem} \begin{proof} Utilizing (\ref{e.opg.3.a}) we have \begin{multline} \left\vert f\left( x\right) \int_{a}^{b}g\left( t\right) dt-g\left( x\right) \int_{a}^{b}f\left( t\right) dt\right\vert \label{e.opg.3.1} \\ \\ \leq \int_{a}^{b}\left\vert g\left( t\right) f\left( x\right) -f\left( t\right) g\left( x\right) \right\vert dt \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{\infty }\left\vert g\left( x\right) \right\vert \int_{a}^{b}\left( \left\vert g\left( t\right) \right\vert \left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}ds\right\vert \right) dt,\text{ } & \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{p}\left\vert g\left( x\right) \right\vert \int_{a}^{b}\left( \left\vert g\left( t\right) \right\vert \left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2q}}ds\right\vert ^{1/q}\right) dt,\text{ } & \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{1}\left\vert g\left( x\right) \right\vert \int_{a}^{b}\left( \left\vert g\left( t\right) \right\vert \sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\{ \frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}\right\} \right) dt & \end{array}% \right. \end{multline}% for any $x\in \left[ a,b\right] ,$ which is of interest in itself. Since $01, \\ \frac{1}{p}+\frac{1}{q}=1.% \end{array}% \end{array}% \end{array}% \right. \end{multline} \end{corollary} The following result also holds: \begin{theorem}[Dragomir, 2013 \protect\cite{opgSSD1}] \label{t.opg.3}Let $f,g:\left[ a,b\right] \rightarrow \mathbb{C}$ be absolutely continuous functions on the interval $\left[ a,b\right] ,g\left( x\right) \neq 0$ for $x\in \left[ a,b\right] $ and $g^{-2}\in L_{\infty }% \left[ a,b\right] .$ Then \begin{multline} \left\vert \frac{f\left( x\right) }{g\left( x\right) }\int_{a}^{b}g\left( t\right) dt-\int_{a}^{b}f\left( t\right) dt\right\vert \label{e.opg.3.2} \\ \\ \leq \left\Vert g^{-2}\right\Vert _{\infty }\times \left\{ \begin{array}{ll} \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{\infty }\int_{a}^{b}\left\vert g\left( t\right) \right\vert \left\vert x-t\right\vert dt, & \text{if }f^{\prime }g-fg^{\prime }\in L_{\infty }\left[ a,b\right] , \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{p}\int_{a}^{b}\left\vert g\left( t\right) \right\vert \left\vert x-t\right\vert ^{1/q}dt & \begin{array}{l} \text{if }f^{\prime }g-fg^{\prime }\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{1}\int_{a}^{b}\left\vert g\left( t\right) \right\vert dt & \end{array}% \right. \end{multline}% for any $x\in \left[ a,b\right] .$ \end{theorem} \begin{proof} Utilizing (\ref{e.opg.3.a}) we have \begin{multline} \left\vert \frac{f\left( x\right) }{g\left( x\right) }\int_{a}^{b}g\left( t\right) dt-\int_{a}^{b}f\left( t\right) dt\right\vert \label{e.opg.3.3} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{\infty }\int_{a}^{b}\left( \left\vert g\left( t\right) \right\vert \left\vert \int_{t}^{x}\frac{1}{% \left\vert g\left( s\right) \right\vert ^{2}}ds\right\vert \right) dt,\text{ } & \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{p}\int_{a}^{b}\left( \left\vert g\left( t\right) \right\vert \left\vert \int_{t}^{x}\frac{1}{% \left\vert g\left( s\right) \right\vert ^{2q}}ds\right\vert ^{1/q}\right) dt,% \text{ } & \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{1}\int_{a}^{b}\left( \left\vert g\left( t\right) \right\vert \sup_{s\in \left[ t,x\right] \left( % \left[ x,t\right] \right) }\left\{ \frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}\right\} \right) dt & \end{array}% \right. \end{multline}% for any $x\in \left[ a,b\right] $. Since% \begin{equation*} \left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}% ds\right\vert \leq \left\Vert g^{-2}\right\Vert _{\infty }\left\vert x-t\right\vert ,\left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2q}}ds\right\vert ^{1/q}\leq \left\Vert g^{-2}\right\Vert _{\infty }\left\vert x-t\right\vert \end{equation*}% and% \begin{equation*} \sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\{ \frac{% 1}{\left\vert g\left( s\right) \right\vert ^{2}}\right\} \leq \left\Vert g^{-2}\right\Vert _{\infty } \end{equation*}% for any $x,t\in \left[ a,b\right] ,$ then on making use of (\ref{e.opg.3.3}) we get the desired result (\ref{e.opg.3.2}). \end{proof} We have the midpoint inequalities: \begin{corollary} \label{c.opg.5}With the assumptions of Theorem \ref{t.opg.3} we have \begin{multline} \left\vert \frac{f\left( \frac{a+b}{2}\right) }{g\left( \frac{a+b}{2}\right) }\int_{a}^{b}g\left( t\right) dt-\int_{a}^{b}f\left( t\right) dt\right\vert \label{e.opg.3.2.a} \\ \\ \leq \left\Vert g^{-2}\right\Vert _{\infty }\times \left\{ \begin{array}{ll} \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{\infty }\int_{a}^{b}\left\vert g\left( t\right) \right\vert \left\vert \frac{a+b}{2}% -t\right\vert dt, & \text{if }f^{\prime }g-fg^{\prime }\in L_{\infty }\left[ a,b\right] , \\ & \\ & \\ & \\ \left\Vert f^{\prime }g-fg^{\prime }\right\Vert _{p}\int_{a}^{b}\left\vert g\left( t\right) \right\vert \left\vert \frac{a+b}{2}-t\right\vert ^{1/q}dt & \begin{array}{l} \text{if }f^{\prime }g-fg^{\prime }\in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1.% \end{array}% \end{array}% \end{array}% \right. \end{multline} \end{corollary} We have the following exponential version of Ostrowski's inequality as well: \begin{theorem}[Dragomir, 2013 \protect\cite{opgSSD1}] \label{t.opg.4}Let $f:\left[ a,b\right] \rightarrow \mathbb{C}$ be an absolutely continuous function on the interval $\left[ a,b\right] $ and $% \alpha \in \mathbb{R}$, $\alpha \neq 0.$ Then for any $x\in \left[ a,b\right] $ we have% \begin{multline} \left\vert \frac{\exp \left( i\alpha \left( b-x\right) \right) -\exp \left( -i\alpha \left( x-a\right) \right) }{i\alpha }f\left( x\right) -\int_{a}^{b}f\left( t\right) dt\right\vert \label{e.opg.3.4} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-i\alpha f\right\Vert _{\infty }\left( b-a\right) ^{2} \left[ \frac{1}{4}+\left( \frac{t-\frac{a+b}{2}}{b-a}\right) ^{2}\right] ,% \text{ if }f^{\prime }-i\alpha f\in L_{\infty }\left[ a,b\right] , & \\ & \\ \left\Vert f^{\prime }-i\alpha f\right\Vert _{p}\frac{\left( b-x\right) ^{1+1/q}+\left( x-a\right) ^{1+1/q}}{1+1/q},\text{ }% \begin{array}{l} \text{if }f^{\prime }-i\alpha f \\ \in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array}% \end{array} & \\ & \\ \left\Vert f^{\prime }-i\alpha f\right\Vert _{1}. & \end{array}% \right. \end{multline} \end{theorem} \begin{proof} If we write the inequality (\ref{e.opg.3.1}) for $g\left( t\right) =\exp \left( i\alpha t\right) ,$ $t\in \left[ a,b\right] ,$ then we get \begin{multline*} \left\vert f\left( x\right) \int_{a}^{b}\exp \left( i\alpha t\right) dt-\exp \left( i\alpha x\right) \int_{a}^{b}f\left( t\right) dt\right\vert \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }-i\alpha f\right\Vert _{\infty }\int_{a}^{b}\left\vert x-t\right\vert dt,\text{ if }f^{\prime }-i\alpha f\in L_{\infty }\left[ a,b% \right] & \\ & \\ \left\Vert f^{\prime }-i\alpha f\right\Vert _{p}\left\vert g\left( x\right) \right\vert \int_{a}^{b}\left\vert x-t\right\vert ^{1/q}dt,\text{ }% \begin{array}{l} \text{if }f^{\prime }-i\alpha f \\ \in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1% \end{array}% \end{array} & \\ & \\ \left\Vert f^{\prime }-i\alpha f\right\Vert _{1}, & \end{array}% \right. \end{multline*}% which, after simple calculation, is equivalent with (\ref{e.opg.3.4}). The details are omitted. \end{proof} \begin{corollary} \label{c.opg.4.1}With the assumptions of Theorem \ref{t.opg.4} we have the midpoint inequalities% \begin{multline} \left\vert \frac{\exp \left( i\alpha \left( \frac{b-a}{2}\right) \right) -\exp \left( -i\alpha \left( \frac{b-a}{2}\right) \right) }{i\alpha }f\left( \frac{a+b}{2}\right) -\int_{a}^{b}f\left( t\right) dt\right\vert \label{e.opg.3.5} \\ \\ \leq \left\{ \begin{array}{ll} \frac{1}{4}\left\Vert f^{\prime }-i\alpha f\right\Vert _{\infty }\left( b-a\right) ^{2},\text{ if }f^{\prime }-i\alpha f\in L_{\infty }\left[ a,b% \right] , & \\ & \\ & \\ & \\ \frac{1}{2^{1/q}\left( 1+1/q\right) }\left( b-a\right) ^{1+1/q}\left\Vert f^{\prime }-i\alpha f\right\Vert _{p},\text{ }% \begin{array}{l} \text{if }f^{\prime }-i\alpha f\in L_{p}\left[ a,b\right] \\ p>1,\frac{1}{p}+\frac{1}{q}=1,% \end{array} & \end{array}% \right. \end{multline}% or, equivalently% \begin{multline} \left\vert \frac{2\sin \left( \alpha \left( \frac{b-a}{2}\right) \right) }{% \alpha }f\left( \frac{a+b}{2}\right) -\int_{a}^{b}f\left( t\right) dt\right\vert \label{e.opg.3.6} \\ \\ \leq \left\{ \begin{array}{ll} \frac{1}{4}\left\Vert f^{\prime }-i\alpha f\right\Vert _{\infty }\left( b-a\right) ^{2},\text{ if }f^{\prime }-i\alpha f\in L_{\infty }\left[ a,b% \right] , & \\ & \\ & \\ & \\ \frac{1}{2^{1/q}\left( 1+1/q\right) }\left( b-a\right) ^{1+1/q}\left\Vert f^{\prime }-i\alpha f\right\Vert _{p},\text{ }% \begin{array}{l} \text{if }f^{\prime }-i\alpha f\in L_{p}\left[ a,b\right] \\ p>1,\frac{1}{p}+\frac{1}{q}=1.% \end{array} & \end{array}% \right. \end{multline} \end{corollary} \subsection{An Application for CBS-Inequality} The following inequality is well known in the literature as the Cauchy-Bunyakovsky-Schwarz inequality, or the CBS-inequality, for short:% \begin{equation} \left\vert \int_{a}^{b}f\left( t\right) g\left( t\right) dt\right\vert ^{2}\leq \int_{a}^{b}\left\vert f\left( t\right) \right\vert ^{2}dt\int_{a}^{b}\left\vert g\left( t\right) \right\vert ^{2}dt, \label{e.opg.4.1} \end{equation}% provided that $f,g\in L_{2}\left[ a,b\right] .$ We have the following result concerning some reverses of the CBS-inequality: \begin{theorem}[Dragomir, 2013 \protect\cite{opgSSD1}] \label{t.opg.4.1}Let $f,g:\left[ a,b\right] \rightarrow \mathbb{C}$ be absolutely continuous functions on the interval $\left[ a,b\right] $ with $% g\left( t\right) \neq 0$ for all $t\in \left[ a,b\right] .$ Then% \begin{multline} 0\leq \int_{a}^{b}\left\vert g\left( t\right) \right\vert ^{2}dt\int_{a}^{b}\left\vert f\left( t\right) \right\vert ^{2}dt-\left\vert \int_{a}^{b}f\left( t\right) g\left( t\right) dt\right\vert ^{2} \label{e.opg.4.2} \\ 0000000000000000\\ \leq \frac{1}{2}\times \left\{ \begin{array}{ll} \left\Vert f^{\prime }\overline{g}-f\overline{g}^{\prime }\right\Vert _{\infty }^{2}\left( \int_{a}^{b}\left\vert g\left( t\right) \right\vert ^{2}dt\right) ^{2}\left( \int_{a}^{b}\frac{1}{\left\vert g\left( t\right) \right\vert ^{2}}dt\right) ^{2},\text{ if }% \begin{array}{c} f^{\prime }\overline{g}-f\overline{g}^{\prime }\in L_{\infty }\left[ a,b% \right] , \\ \frac{1}{\left\vert g\right\vert ^{2}}\in L\left[ a,b\right]% \end{array} & \\ & \\ \left\Vert f^{\prime }\overline{g}-f\overline{g}^{\prime }\right\Vert _{p}^{2}\left( \int_{a}^{b}\left\vert g\left( t\right) \right\vert ^{2}dt\right) ^{2}\left( \int_{a}^{b}\frac{1}{\left\vert g\left( t\right) \right\vert ^{2q}}dt\right) ^{2/q},\text{ if }% \begin{array}{l} f^{\prime }\overline{g}-f\overline{g}^{\prime }\in L_{p}\left[ a,b\right] , \\ \frac{1}{\left\vert g\right\vert ^{2q}}\in L\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array}% \end{array} & \\ & \\ \left\Vert f^{\prime }\overline{g}-f\overline{g}^{\prime }\right\Vert _{1}^{2}\left( \int_{a}^{b}\left\vert g\left( t\right) \right\vert ^{2}dt\right) ^{2}ess\sup_{t\in \left[ a,b\right] }\left\{ \frac{1}{% \left\vert g\left( t\right) \right\vert ^{4}}\right\} ,\text{ if }\frac{1}{% \left\vert g\right\vert }\in L_{\infty }\left[ a,b\right] . & \end{array}% \right.\\ \end{multline} \end{theorem} \begin{proof} Utilising the inequality (\ref{e.opg.3.a}) we have \begin{multline} \left\vert \overline{g\left( t\right) }f\left( x\right) -f\left( t\right) \overline{g\left( x\right) }\right\vert \label{e.opg.4.3} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }\overline{g}-f\overline{g}^{\prime }\right\Vert _{\infty }\left\vert g\left( t\right) g\left( x\right) \right\vert \left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}% ds\right\vert & \begin{array}{l} \text{if }f^{\prime }\overline{g}-f\overline{g}^{\prime } \\ \in L_{\infty }\left[ a,b\right] ,% \end{array} \\ & \\ \left\Vert f^{\prime }\overline{g}-f\overline{g}^{\prime }\right\Vert _{p}\left\vert g\left( t\right) g\left( x\right) \right\vert \left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2q}}% ds\right\vert ^{1/q} & \begin{array}{l} \text{if }f^{\prime }\overline{g}-f\overline{g}^{\prime } \\ \in L_{p}\left[ a,b\right] \\ \begin{array}{c} p>1, \\ \frac{1}{p}+\frac{1}{q}=1,% \end{array}% \end{array} \\ & \\ \left\Vert f^{\prime }\overline{g}-f\overline{g}^{\prime }\right\Vert _{1}\left\vert g\left( t\right) g\left( x\right) \right\vert \sup_{s\in % \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\{ \frac{1}{% \left\vert g\left( s\right) \right\vert ^{2}}\right\} . & \end{array}% \right. \end{multline}% for any $t,x\in \left[ a,b\right] .$ Taking the square in (\ref{e.opg.4.3}) and integrating over $\left( t,x\right) \in \left[ a,b\right] ^{2}$ we have% \begin{multline} \int_{a}^{b}\int_{a}^{b}\left\vert \overline{g\left( t\right) }f\left( x\right) -f\left( t\right) \overline{g\left( x\right) }\right\vert ^{2}dtdx \label{e.opg.4.4} \\ \\ \leq \left\{ \begin{array}{ll} \left\Vert f^{\prime }\overline{g}-f\overline{g}^{\prime }\right\Vert _{\infty }^{2}\int_{a}^{b}\int_{a}^{b}\left\vert g\left( t\right) g\left( x\right) \right\vert ^{2}\left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}ds\right\vert ^{2}dtdx,\text{ } & \\ & \\ \left\Vert f^{\prime }\overline{g}-f\overline{g}^{\prime }\right\Vert _{p}^{2}\int_{a}^{b}\int_{a}^{b}\left\vert g\left( t\right) g\left( x\right) \right\vert ^{2}\left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2q}}ds\right\vert ^{2/q}dtdx,\text{ } & \\ & \\ \left\Vert f^{\prime }\overline{g}-f\overline{g}^{\prime }\right\Vert _{1}^{2}\int_{a}^{b}\int_{a}^{b}\left\vert g\left( t\right) g\left( x\right) \right\vert ^{2}\sup_{s\in \left[ t,x\right] \left( \left[ x,t\right] \right) }\left\{ \frac{1}{\left\vert g\left( s\right) \right\vert ^{4}}% \right\} dtdx. & \end{array}% \right. \end{multline}% Observe that% \begin{align*} & \int_{a}^{b}\int_{a}^{b}\left\vert \overline{g\left( t\right) }f\left( x\right) -f\left( t\right) \overline{g\left( x\right) }\right\vert ^{2}dtdx \\ & =\int_{a}^{b}\int_{a}^{b}\left( \left\vert g\left( t\right) \right\vert ^{2}\left\vert f\left( x\right) \right\vert ^{2}-2{\rm Re}\left[ \overline{% g\left( t\right) }f\left( x\right) \overline{f\left( t\right) \overline{% g\left( x\right) }}\right] +\left\vert g\left( x\right) \right\vert ^{2}\left\vert f\left( t\right) \right\vert ^{2}\right) dtdx \\ & =2\left[ \int_{a}^{b}\left\vert g\left( t\right) \right\vert ^{2}dt\int_{a}^{b}\left\vert f\left( t\right) \right\vert ^{2}dt-\left\vert \int_{a}^{b}f\left( t\right) g\left( t\right) dt\right\vert ^{2}\right] , \end{align*}% \begin{equation*} \int_{a}^{b}\int_{a}^{b}\left[ \left\vert g\left( t\right) g\left( x\right) \right\vert ^{2}\left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2}}ds\right\vert ^{2}\right] dtdx\leq \left( \int_{a}^{b}\left\vert g\left( t\right) \right\vert ^{2}dt\right) ^{2}\left( \int_{a}^{b}\frac{1}{\left\vert g\left( t\right) \right\vert ^{2}}dt\right) ^{2}, \end{equation*}% \begin{align*} & \int_{a}^{b}\int_{a}^{b}\left[ \left\vert g\left( t\right) g\left( x\right) \right\vert ^{2}\left\vert \int_{t}^{x}\frac{1}{\left\vert g\left( s\right) \right\vert ^{2q}}ds\right\vert ^{2/q}\right] dtdx \\ & \leq \left( \int_{a}^{b}\left\vert g\left( t\right) \right\vert ^{2}dt\right) ^{2}\left( \int_{a}^{b}\frac{1}{\left\vert g\left( t\right) \right\vert ^{2q}}dt\right) ^{2/q} \end{align*}% and% \begin{align*} & \int_{a}^{b}\int_{a}^{b}\left[ \left\vert g\left( t\right) g\left( x\right) \right\vert ^{2}\sup_{s\in \left[ t,x\right] \left( \left[ x,t% \right] \right) }\left\{ \frac{1}{\left\vert g\left( s\right) \right\vert ^{4}}\right\} \right] dtdx \\ & \leq \left( \int_{a}^{b}\left\vert g\left( t\right) \right\vert ^{2}dt\right) ^{2}ess\sup_{t\in \left[ a,b\right] }\left\{ \frac{1}{% \left\vert g\left( t\right) \right\vert ^{4}}\right\} , \end{align*}% then by (\ref{e.opg.4.4}) we get the desired result (\ref{e.opg.4.2}). \end{proof} \bibliographystyle{amsplain} \begin{thebibliography}{99} \bibitem{ompAMAABFS} A.M. Acu, A. Babo\c{s} and F.D. Sofonea, \textit{The mean value theorems and inequalities of Ostrowski type}, Sci. Stud. Res. Ser. Math. Inform. \textbf{21} (2011), no. 1, 5--16. \bibitem{ompAMAFS} A.M. Acu and F.D. Sofonea, \textit{On an inequality of Ostrowski type}, J. Sci. Arts \textbf{16} (2011), no. 3, 281--287. \bibitem{opaSSD} S.S. Dragomir, \textit{An inequality of Ostrowski type via Pompeiu's mean value theorem}, J. Inequal. Pure Appl. Math. \textbf{% 6 } (2005), no. 3, Article 83, 9 pp. \bibitem{opaSSD0} S.S. Dragomir,\textit{ Another Ostrowski type inequality via Pompeiu's mean value theorem}, accepted General Mathematics, Preprint \textit{RGMIA Res. Rep. Coll. }\textbf{16} (2013), Art. 64 \texttt{% [Online http://rgmia.org/papers/v16/v16a64.pdf].} \bibitem{opaSSD1} S.S. Dragomir, \textit{Inequalities of Pompeiu's type for absolutely continuous functions with applications to Ostrowski's inequality}, Acta Math. Acad. Paedagog. Nyh\'{a}zi. (N.S.) \textbf{30} (2014), no. 1, 43--52. %accepted Acta Mathematica Academiae Paedagogicae Ny\'{\i}regyh% %ziensis, Preprint \textit{RGMIA Res. Rep. Coll. }\textbf{16} (2013), Art. %66, pp. 10 \texttt{[Online http://rgmia.org/papers/v16/v16a66.pdf].} \bibitem{oppSSD1} S.S. Dragomir, \textit{Power Pompeiu's type inequalities for absolutely continuous functions with applications to Ostrowski's inequality}, Stud. Univ. Babe\c{s}-Bolyai Math. \textbf{59} (2014), no. 2, 131-140, Preprint \textit{RGMIA Res. Rep. Coll. }\textbf{16} (2013), Art. 68, pp. 8 \texttt{[Online http://rgmia.org/papers/v16/v16a68.pdf].} \bibitem{opeSSD1} S.S. Dragomir, \textit{Exponential Pompeiu's type inequalities with applications to Ostrowski's inequality}, accepted Acta Math. Univ. Comenianae, Preprint \textit{RGMIA} \textit{Res. Rep. Coll.} \textbf{% 16} (2013), Art. 70, pp. 12 \texttt{[Online http://rgmia.org/papers/v16/v16a70.pdf].} \bibitem{opgSSD1} S.S. Dragomir, \textit{Ostrowski via a two functions Pompeiu's inequality}, Preprint RGMIA Res. Rep. Coll. \textbf{16} (2013), Art. 90, 13pp. \texttt{[Online http://rgmia.org/papers/v16/v16a90.pdf]}. \bibitem{ompAO} A. Ostrowski, \textit{\"{U}ber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert}, Comment. Math. Hel, \textbf{10 }(1938), 226--227. \bibitem{ompJPSU} J. Pe\v{c}ari\'{c} and S. Ungar, \textit{On an inequality of Ostrowski type}, J. Ineq. Pure \&Appl. Math \textbf{7} (2006), no. 4, Article 151 . \bibitem{opaDP} D. Pompeiu, \textit{Sur une proposition analogue au th\'{e}or\`{e}me des accroissements finis}, Mathematica (Cluj, Romania), \textbf{22} (1946), 143--146. \bibitem{ompECP} E.C. Popa, \textit{An inequality of Ostrowski type via a mean value theorem}, Gen. Math. \textbf{15}, (2007), no. 1, 93--100. \bibitem{opaPKSTR} P.K. Sahoo and T. Riedel, \textit{Mean Value Theorems and Functional Equations}, World Scientific, Singapore, New Jersey, London, Hong Kong, 2000. \end{thebibliography} \end{document} %------------------------------------------------------------------------------ % End of journal.tex %------------------------------------------------------------------------------ .