\documentclass[12pt,reqno]{article} \usepackage[usenames]{color} \usepackage{amssymb} \usepackage{graphicx} \usepackage{amscd} \usepackage[colorlinks=true, linkcolor=webgreen, filecolor=webbrown, citecolor=webgreen]{hyperref} \definecolor{webgreen}{rgb}{0,.5,0} \definecolor{webbrown}{rgb}{.6,0,0} \usepackage{color} \usepackage{fullpage} \usepackage{float} \usepackage{psfig} \usepackage{graphics,amsmath,amssymb} \usepackage{amsfonts} \usepackage{latexsym} \usepackage{epsf} \setlength{\textwidth}{6.5in} \setlength{\oddsidemargin}{.1in} \setlength{\evensidemargin}{.1in} \setlength{\topmargin}{-.5in} \setlength{\textheight}{8.9in} \newcommand{\seqnum}[1]{\href{http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=#1}{\underline{#1}}} \begin{document} \begin{center} \epsfxsize=4in \leavevmode\epsffile{logo129.eps} \end{center} \begin{center} \vskip 1cm{\LARGE\bf On Divisibility of Narayana Numbers by \\ \vskip .1in Primes \\ } \vskip 1cm \large Mikl\'os B\'ona \\ Department of Mathematics \\ University of Florida \\ Gainesville, FL 32611 \\ USA \\ \href{mailto:bona@math.ufl.edu}{\tt bona@math.ufl.edu} \\ \ \\ Bruce E. Sagan\\ Department of Mathematics \\ Michigan State University\\ East Lansing, MI 48824-1027\\ USA\\ \href{mailto:sagan@math.msu.edu}{\tt sagan@math.msu.edu} \\ \end{center} \vskip .2 in \begin{abstract} Using Kummer's theorem, we give a necessary and sufficient condition for a Narayana number to be divisible by a given prime. We use this to derive certain properties of the Narayana triangle. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{corollary}{Corollary}[section] \newtheorem{lemma}{Lemma}[section] %J Integer Seq 4/7/05 shallit@graceland.uwaterloo.ca % % THIS DOCUMENT IS WRITTEN IN LATEX 2e % % TO FIND THE TITLE: search for the command \title using your word % processor % %\documentclass[12pt]{article} % \usepackage{amssymb,latexsym} \newcommand{\ben}{\begin{enumerate}} \newcommand{\een}{\end{enumerate}} \newcommand{\ble}{\begin{lem}} \newcommand{\ele}{\end{lem}} \newcommand{\bth}{\begin{thm}} \renewcommand{\eth}{\end{thm}} \newcommand{\bpr}{\begin{prop}} \newcommand{\epr}{\end{prop}} \newcommand{\bco}{\begin{cor}} \newcommand{\eco}{\end{cor}} \newcommand{\bcon}{\begin{conj}} \newcommand{\econ}{\end{conj}} \newcommand{\bde}{\begin{defn}} \newcommand{\ede}{\end{defn}} \newcommand{\bex}{\begin{exa}} \newcommand{\eex}{\end{exa}} \newcommand{\barr}{\begin{array}} \newcommand{\earr}{\end{array}} \newcommand{\btab}{\begin{tabular}} \newcommand{\etab}{\end{tabular}} \newcommand{\beq}{\begin{equation}} \newcommand{\eeq}{\end{equation}} \newcommand{\bea}{\begin{eqnarray*}} \newcommand{\eea}{\end{eqnarray*}} \newcommand{\bce}{\begin{center}} \newcommand{\ece}{\end{center}} \newcommand{\bpi}{\begin{picture}} \newcommand{\epi}{\end{picture}} \newcommand{\bfi}{\begin{figure} \begin{center}} \newcommand{\efi}{\end{center} \end{figure}} \newcommand{\capt}{\caption} \newcommand{\bsl}{\begin{slide}{}} \newcommand{\esl}{\end{slide}} %\newcommand{\ch}{\choose} \newcommand{\bib}{thebibliography} \newcommand{\pf}{{\bf Proof}\hspace{7pt}} \newcommand{\qed}{\rule{1ex}{1ex}} \newcommand{\Qed}{\rule{1ex}{1ex} \medskip} \newcommand{\qqed}{\qquad\rule{1ex}{1ex}} \newcommand{\Qqed}{\qquad\rule{1ex}{1ex}\medskip} \newcommand{\mc}[3]{\multicolumn{#1}{#2}{#3}} \newcommand{\Mc}[1]{\multicolumn{#1}{c}{}} %\newcommand{\mc}[2]{\multicolumn{#1}{#2}} \newcommand{\ul}{\underline} \newcommand{\ol}{\overline} \newcommand{\hor}{\mbox{--}} \newcommand{\hs}[1]{\hspace{#1}} \newcommand{\hso}[1]{\hspace{-1pt}} \newcommand{\vs}[1]{\vspace{#1}} \newcommand{\qmq}[1]{\quad\mbox{#1}\quad} \newcommand{\ssk}{\smallskip} \newcommand{\msk}{\mediumskip} \newcommand{\bsk}{\bigskip} \newcommand{\rp}[2]{\rule{#1pt}{#2pt}} \newcommand{\st}[1]{\rule{#1pt}{0pt}} %\newcommand{\st}[1]{\rule{#1}{0pt}} \newcommand{\mbl}[1]{\makebox(0,0)[l]{#1}} \newcommand{\mbr}[1]{\makebox(0,0)[r]{#1}} \newcommand{\mbt}[1]{\makebox(0,0)[t]{#1}} \newcommand{\mbb}[1]{\makebox(0,0)[b]{#1}} \newcommand{\mbc}[1]{\makebox(0,0){#1}} \newcommand{\emp}{\emptyset} \newcommand{\indu}{\uparrow} \newcommand{\rest}{\downarrow} \newcommand{\sm}{\hspace{-2pt}\setminus\hspace{-2pt}} \newcommand{\sbs}{\subset} \newcommand{\sbe}{\subseteq} \newcommand{\sps}{\supset} \newcommand{\spe}{\supseteq} \newcommand{\setm}{\setminus} \newcommand{\asy}{\thicksim} \newcommand{\dle}{<\hspace{-6pt}\cdot} \newcommand{\dge}{\cdot\hspace{-6pt}>} \newcommand{\iso}{\cong} %\newcommand{\con}{\equiv} \newcommand{\Cong}{\equiv} \newcommand{\conm}[1]{\stackrel{#1}{\equiv}} \newcommand{\widevec}{\overrightarrow} %makes a wide arrow over stuff if have \overrightarrow{stuff} \newcommand{\Ch}{\hat{C}} \newcommand{\eh}{\hat{e}} \newcommand{\Gh}{\hat{G}} \newcommand{\ih}{\hat{\imath}} \newcommand{\jh}{\hat{\jmath}} \newcommand{\gh}{\hat{g}} \newcommand{\mh}{\hat{0}} \newcommand{\Mh}{\hat{1}} \newcommand{\Dh}{\hat{D}} \newcommand{\zh}{\hat{0}} \newcommand{\oh}{\hat{1}} \newcommand{\Ph}{\hat{P}} \newcommand{\ph}{\hat{p}} \newcommand{\Pih}{\hat{\Pi}} \newcommand{\Qh}{\hat{Q}} \newcommand{\Sh}{\hat{S}} \newcommand{\lh}{\hat{l}} \newcommand{\xh}{\hat{x}} \newcommand{\ptn}{\vdash} \newcommand{\lt}{\lhd} \newcommand{\gt}{\rhd} \newcommand{\lte}{\unlhd} \newcommand{\gte}{\unrhd} \newcommand{\jn}{\vee} \newcommand{\Jn}{\bigvee} \newcommand{\mt}{\wedge} \newcommand{\Mt}{\bigwedge} \newcommand{\bdy}{\partial} \newcommand{\sd}{\bigtriangleup} \newcommand{\case}[4]{\left\{\barr{ll}#1&\mbox{#2}\\#3&\mbox{#4}\earr\right.} \newcommand{\fl}[1]{\lfloor #1 \rfloor} \newcommand{\ce}[1]{\lceil #1 \rceil} \newcommand{\flf}[2]{\left\lfloor\frac{#1}{#2}\right\rfloor} \newcommand{\cef}[2]{\left\lceil\frac{#1}{#2}\right\rceil} \newcommand{\gau}[2]{\left[ \barr{c} #1 \\ #2 \earr \right]} \newcommand{\setc}[2]{\{left{#1}\ :\ #2\}} \newcommand{\setl}[2]{\{left{#1}\ |\ #2\}} \newcommand{\qst}{$q$-Stirling numbers} \newcommand{\qbi}{$q$-binomial coefficients} \newcommand{\del}{\nabla} \newcommand{\pde}[2]{\frac{\partial#1}{\partial#2}} \newcommand{\spd}[2]{\frac{\partial^2\hspace{-2pt}#1}{\partial#2^2}} \newcommand{\ode}[2]{\ds\frac{d#1}{d#2}} \def\<{\langle} \def\>{\rangle} \newcommand{\fall}[2]{\langle{#1}\rangle_{#2}} \newcommand{\nor}[1]{\parallel{#1}\parallel} \newcommand{\ipr}[2]{\langle{#1},{#2}\rangle} \newcommand{\spn}[1]{\langle{#1}\rangle} %\newcommand{\lb}{\left\{} %\newcommand{\rb}{\right\}} \newcommand{\ree}[1]{(\ref{#1})} \newcommand{\rpl}{$\longleftarrow$} \newcommand{\ra}{\rightarrow} \newcommand{\Ra}{\Rightarrow} \newcommand{\lta}{\leftarrow} \newcommand{\rla}{\leftrightarrow} \newcommand{\lra}{\longrightarrow} \newcommand{\lla}{\longleftarrow} \newcommand{\Lra}{\Longrightarrow} \newcommand{\llra}{\longleftrightarrow} \newcommand{\Llra}{\Longleftrightarrow} \newcommand{\ve}[1]{\stackrel{\ra}{#1}} \newcommand{\al}{\alpha} \newcommand{\be}{\beta} \newcommand{\ga}{\gamma} \newcommand{\de}{\delta} \newcommand{\ep}{\epsilon} \newcommand{\io}{\iota} \newcommand{\ka}{\kappa} \newcommand{\la}{\lambda} \newcommand{\mut}{\tilde{\mu}} \newcommand{\om}{\omega} \newcommand{\Phit}{\tilde{\Phi}} \newcommand{\Psit}{\tilde{\Psi}} \newcommand{\rhot}{\tilde{\rho}} \newcommand{\si}{\sigma} \renewcommand{\th}{\theta} % NOTE THAT \th HAS BEEN RENEWCOMMANDed \newcommand{\ze}{\zeta} \newcommand{\Al}{\Alpha} \newcommand{\Ga}{\Gamma} \newcommand{\De}{\Delta} \newcommand{\Ep}{\epsilon} \newcommand{\La}{\Lambda} \newcommand{\Om}{\Omega} \newcommand{\Si}{\Sigma} \newcommand{\Th}{\Theta} \newcommand{\Ze}{\Zeta} \newcommand{\0}{{\bf 0}} \newcommand{\1}{{\bf 1}} \newcommand{\2}{{\bf 2}} \newcommand{\3}{{\bf 3}} \newcommand{\4}{{\bf 4}} \newcommand{\5}{{\bf 5}} \newcommand{\6}{{\bf 6}} \newcommand{\7}{{\bf 7}} \newcommand{\8}{{\bf 8}} \newcommand{\9}{{\bf 9}} \newcommand{\ba}{{\bf a}} \newcommand{\bb}{{\bf b}} \newcommand{\bc}{{\bf c}} \newcommand{\bd}{{\bf d}} \newcommand{\bfe}{{\bf e}} \newcommand{\bff}{{\bf f}} \newcommand{\bg}{{\bf g}} \newcommand{\bh}{{\bf h}} \newcommand{\bi}{{\bf i}} \newcommand{\bj}{{\bf j}} \newcommand{\bk}{{\bf k}} \newcommand{\bm}{{\bf m}} \newcommand{\bn}{{\bf n}} \newcommand{\bp}{{\bf p}} \newcommand{\bq}{{\bf q}} \newcommand{\br}{{\bf r}} \newcommand{\bs}{{\bf s}} \newcommand{\bt}{{\bf t}} \newcommand{\bu}{{\bf u}} \newcommand{\bv}{{\bf v}} \newcommand{\bw}{{\bf w}} \newcommand{\bx}{{\bf x}} \newcommand{\by}{{\bf y}} \newcommand{\bz}{{\bf z}} \newcommand{\bA}{{\bf A}} \newcommand{\bB}{{\bf B}} \newcommand{\bC}{{\bf C}} \newcommand{\bE}{{\bf E}} \newcommand{\bF}{{\bf F}} \newcommand{\bG}{{\bf G}} \newcommand{\bH}{{\bf H}} \newcommand{\bN}{{\bf N}} \newcommand{\bP}{{\bf P}} \newcommand{\bQ}{{\bf Q}} \newcommand{\bR}{{\bf R}} \newcommand{\bS}{{\bf S}} \newcommand{\bT}{{\bf T}} \newcommand{\bX}{{\bf X}} \newcommand{\bXh}{\hat{{\bf X}}} \newcommand{\bZ}{{\bf Z}} \newcommand{\bep}{{\bf \ep}} \newcommand{\bcdot}{{\bf \cdot}} \newcommand{\bbC}{{\mathbb C}} \newcommand{\bbF}{{\mathbb F}} \newcommand{\bbN}{{\mathbb N}} \newcommand{\bbP}{{\mathbb P}} \newcommand{\bbQ}{{\mathbb Q}} \newcommand{\bbR}{{\mathbb R}} \newcommand{\bbS}{{\mathbb S}} \newcommand{\bbZ}{{\mathbb Z}} \newcommand{\cA}{{\cal A}} \newcommand{\cAB}{{\cal AB}} \newcommand{\cAD}{{\cal AD}} \newcommand{\cB}{{\cal B}} \newcommand{\cBC}{{\cal BC}} \newcommand{\cC}{{\cal C}} \newcommand{\cD}{{\cal D}} \newcommand{\cDB}{{\cal DB}} \newcommand{\cE}{{\cal E}} \newcommand{\cF}{{\cal F}} \newcommand{\cG}{{\cal G}} \newcommand{\cH}{{\cal H}} \newcommand{\cI}{{\cal I}} \newcommand{\cIF}{{\cal IF}} \newcommand{\cJ}{{\cal J}} \newcommand{\cK}{{\cal K}} \newcommand{\cL}{{\cal L}} \newcommand{\cm}{{\cal m}} \newcommand{\cM}{{\cal M}} \newcommand{\cN}{{\cal N}} \newcommand{\cNBC}{{\cal NBC}} \newcommand{\cO}{{\cal O}} \newcommand{\cP}{{\cal P}} \newcommand{\cPD}{{\cal PD}} \newcommand{\cR}{{\cal R}} \newcommand{\cRF}{{\cal RF}} \newcommand{\cS}{{\cal S}} \newcommand{\cT}{{\cal T}} \newcommand{\cV}{{\cal V}} \newcommand{\cW}{{\cal W}} \newcommand{\cX}{{\cal X}} \newcommand{\cY}{{\cal Y}} \newcommand{\cZ}{{\cal Z}} \newcommand{\df}{\dot{f}} \newcommand{\dF}{\dot{F}} \newcommand{\fgl}{{\mathfrak gl}} \newcommand{\fS}{{\mathfrak S}} \newcommand{\at}{\tilde{a}} \newcommand{\ct}{\tilde{c}} \newcommand{\dt}{\tilde{d}} \newcommand{\pt}{\tilde{p}} \newcommand{\Bt}{\tilde{B}} \newcommand{\Gt}{\tilde{G}} \newcommand{\Ht}{\tilde{H}} \newcommand{\Kt}{\tilde{K}} \newcommand{\Nt}{\tilde{N}} \newcommand{\St}{\tilde{S}} \newcommand{\Xt}{\tilde{X}} \newcommand{\alt}{\tilde{\alpha}} \newcommand{\bet}{\tilde{\beta}} \newcommand{\rht}{\tilde{\rho}} \newcommand{\Pit}{\tilde{\Pi}} \newcommand{\tal}{\tilde{\alpha}} \newcommand{\tbe}{\tilde{\beta}} \newcommand{\tPi}{\tilde{\Pi}} \newcommand{\ab}{\ol{a}} \newcommand{\Ab}{\ol{A}} \newcommand{\Bb}{\ol{B}} \newcommand{\cb}{\ol{c}} \newcommand{\Cb}{{\ol{C}}} \newcommand{\db}{\ol{d}} \newcommand{\Db}{\ol{D}} \newcommand{\eb}{\ol{e}} \newcommand{\Eb}{\ol{E}} \newcommand{\fb}{\ol{f}} \newcommand{\Gb}{\ol{G}} \newcommand{\Hb}{\ol{H}} \newcommand{\ib}{\ol{\imath}} \newcommand{\Ib}{\ol{I}} \newcommand{\jb}{\ol{\jmath}} \newcommand{\Jb}{\ol{J}} \newcommand{\kb}{\ol{k}} \newcommand{\Kb}{\ol{K}} \newcommand{\nb}{\ol{n}} \newcommand{\pb}{\ol{p}} \newcommand{\Pb}{\ol{P}} \newcommand{\Phib}{\ol{\Phi}} \newcommand{\Qb}{\ol{Q}} \newcommand{\rb}{\ol{r}} \newcommand{\Rb}{\ol{R}} \newcommand{\Sb}{\ol{S}} \newcommand{\tb}{\ol{t}} \newcommand{\Tb}{\ol{T}} \newcommand{\Ub}{\ol{U}} \newcommand{\Wb}{\ol{W}} \newcommand{\xb}{\ol{x}} \newcommand{\Xb}{\ol{X}} \newcommand{\yb}{\ol{y}} \newcommand{\Yb}{\ol{Y}} \newcommand{\zb}{\ol{z}} \newcommand{\Zb}{\ol{Z}} \newcommand{\pib}{\ol{\pi}} \newcommand{\sib}{\ol{\si}} \newcommand{\degb}{\ol{\deg}} \newcommand{\vj}{\vec{\jmath}} \newcommand{\vv}{\vec{v}} \newcommand{\ttab}{\{t\}} \newcommand{\stab}{\{s\}} \newcommand{\Aut}{\mathop{\rm Aut}\nolimits} \newcommand{\abl}{\mathop{\rm al}\nolimits} \newcommand{\capa}{\mathop{\rm cap}\nolimits} \newcommand{\codim}{\mathop{\rm codim}\nolimits} \newcommand{\ch}{\mathop{\rm ch}\nolimits} %Commented out \ch for choose \newcommand{\col}{\mathop{\rm col}\nolimits} \newcommand{\ctt}{\mathop{\rm ct}\nolimits} \newcommand{\Der}{\mathop{\rm Der}\nolimits} \newcommand{\des}{\mathop{\rm des}\nolimits} \newcommand{\Des}{\mathop{\rm Des}\nolimits} \newcommand{\diag}{\mathop{\rm diag}\nolimits} \newcommand{\Diag}{\mathop{\rm Diag}\nolimits} \newcommand{\diam}{\mathop{\rm diam}\nolimits} \newcommand{\End}{\mathop{\rm End}\nolimits} \newcommand{\ev}{\mathop{\rm ev}\nolimits} \newcommand{\eval}{\mathop{\rm eval}\nolimits} \newcommand{\Eval}{\mathop{\rm Eval}\nolimits} \newcommand{\FPF}{\mathop{\rm FPF}\nolimits} \newcommand{\gen}{\mathop{\rm gen}\nolimits} \newcommand{\Harm}{\mathop{\rm Harm}\nolimits} \newcommand{\Hom}{\mathop{\rm Hom}\nolimits} \newcommand{\id}{\mathop{\rm id}\nolimits} \newcommand{\im}{\mathop{\rm im}\nolimits} \newcommand{\imaj}{\mathop{\rm imaj}\nolimits} \newcommand{\inc}{\mathop{\rm inc}\nolimits} \newcommand{\Ind}{\mathop{\rm Ind}\nolimits} \newcommand{\inter}{\mathop{\rm int}\nolimits} \newcommand{\Inter}{\mathop{\rm Int}\nolimits} \newcommand{\inv}{\mathop{\rm inv}\nolimits} \newcommand{\Inv}{\mathop{\rm Inv}\nolimits} \newcommand{\lcm}{\mathop{\rm lcm}\nolimits} \newcommand{\LHS}{\mathop{\rm LHS}\nolimits} \newcommand{\Mat}{\mathop{\rm Mat}\nolimits} \newcommand{\maj}{\mathop{\rm maj}\nolimits} \newcommand{\Mod}{\mathop{\rm mod}\nolimits} \newcommand{\NBB}{\mathop{\rm NBB}\nolimits} \newcommand{\nin}{\mathop{\rm nin}\nolimits} \newcommand{\Nin}{\mathop{\rm Nin}\nolimits} \newcommand{\nul}{\mathop{\rm nul}\nolimits} \newcommand{\od}{\mathop{\rm od}\nolimits} \newcommand{\per}{\mathop{\rm per}\nolimits} \newcommand{\Pete}{\mathop{\rm Pete}\nolimits} \newcommand{\pfa}{\mathop{\rm pf}\nolimits} \newcommand{\Pm}{\mathop{\rm pm}\nolimits} \newcommand{\PM}{\mathop{\rm PM}\nolimits} \newcommand{\Pol}{\mathop{\rm Pol}\nolimits} \newcommand{\rad}{\mathop{\rm rad}\nolimits} \newcommand{\RHS}{\mathop{\rm RHS}\nolimits} \newcommand{\rk}{\mathop{\rm rk}\nolimits} \newcommand{\rank}{\mathop{\rm rank}\nolimits} \newcommand{\reg}{\mathop{\rm reg}\nolimits} \newcommand{\row}{\mathop{\rm row}\nolimits} \newcommand{\sdiam}{\mathop{\rm sdiam}\nolimits} \newcommand{\sgn}{\mathop{\rm sgn}\nolimits} \newcommand{\sign}{\mathop{\rm sign}\nolimits} \newcommand{\sh}{\mathop{\rm sh}\nolimits} \newcommand{\slack}{\mathop{\rm slack}\nolimits} \newcommand{\spa}{\mathop{\rm span}\nolimits} \newcommand{\sta}{\mathop{\rm st}\nolimits} \newcommand{\summ}{\mathop{\rm sum}\nolimits} \newcommand{\sus}{\mathop{\rm susp}\nolimits} \newcommand{\Sym}{\mathop{\rm Sym}\nolimits} \newcommand{\SYT}{\mathop{\rm SYT}\nolimits} \newcommand{\tang}{\mathop{\rm tang}\nolimits} \newcommand{\tr}{\mathop{\rm tr}\nolimits} \newcommand{\tri}{\mathop{\rm tri}\nolimits} \newcommand{\wed}{\mathop{\rm wedge}\nolimits} \newcommand{\wt}{\mathop{\rm wt}\nolimits} \newcommand{\bul}{\bullet} \newcommand{\dil}{\displaystyle} \newcommand{\dsum}{\dil\sum} \newcommand{\dint}{\dil\int} % \newcommand{\dfrac}{\dil\frac} \newcommand{\scl}{\scriptstyle} \newcommand{\ssl}{\scriptscriptstyle} \newcommand{\foz}{\footnotesize} \newcommand{\scz}{\scriptsize} \newcommand{\cho}{\choose} \newcommand{\Schu}{Sch\"utzenberger} \newcommand{\aim}{Adv.\ in Math.\/} \newcommand{\bams}{Bull.\ Amer.\ Math.\ Soc.\/} \newcommand{\cjm}{Canad.\ J. Math.\/} \newcommand{\dm}{Discrete Math.\/} \newcommand{\dmj}{Duke Math.\ J.\/} \newcommand{\ejc}{European J. Combin.\/} \newcommand{\jaa}{J. Algebra\/} \newcommand{\jac}{J. Algebraic Combin.\/} \newcommand{\jas}{J. Algorithms\/} \newcommand{\jams}{J. Amer.\ Math.\ Soc.\/} \newcommand{\jct}{J. Combin.\ Theory\/} \newcommand{\jcta}{J. Combin.\ Theory Ser. A\/} \newcommand{\jctb}{J. Combin.\ Theory Ser. B\/} \newcommand{\jgt}{J. Graph Theory\/} \newcommand{\jram}{J. Reine Angew.\ Math.\/} \newcommand{\pjm}{Pacific J. Math.\/} \newcommand{\pams}{Proc.\ Amer.\ Math.\ Soc.\/} \newcommand{\plms}{Proc.\ London Math.\ Soc.\/} \newcommand{\tams}{Trans.\ Amer.\ Math.\ Soc.\/} \newcommand{\pja}{Proc.\ Japan Acad.\ Ser.\ A Math\/} \newcommand{\sv}{Springer-Verlag Lecture Notes in Math.\/} \newcommand{\crgs}{Combinatoire et Repr\'{e}sentation du Groupe Sym\'{e}trique, Strasbourg 1976, D. Foata ed.} \newcommand{\caup}{Cambridge University Press} \newcommand{\oup}{Oxford University Press} \newcommand{\pr}{preprint} \newcommand{\ip}{in preparation} \newcommand{\ds}{\displaystyle} \setlength{\topmargin}{.1in} \setlength{\textheight}{8in} \setlength{\textwidth}{7in} \setlength{\evensidemargin}{-.2in} \setlength{\oddsidemargin}{-.2in} \newtheorem{thm}{Theorem}[section] \newtheorem{prop}[thm]{Proposition} \newtheorem{cor}[thm]{Corollary} \newtheorem{lem}[thm]{Lemma} \newtheorem{conj}[thm]{Conjecture} \newtheorem{exa}[thm]{Example} \newtheorem{question}[thm]{Question} \section{The main theorem} Let $\bbN$ denote the nonnegative integers and let $k,n\in\bbN$. The {\it Narayana numbers\/}~\cite[A001263]{slo:ole} can be defined as $$ N(n,k)=\frac{1}{n}{n\choose k}{n\choose k+1} $$ where $0\le kk$. The {\it order\/} of $n$ modulo $p$ is the largest power of $p$ dividing $n$ and will be denoted $\om_p(n)$. As usual, $k|n$ means that $k$ divides $n$. Kummer's theorem~\cite{kum:ear} gives a useful way of finding the order of binomial coefficients. For example, Knuth and Wilf~\cite{kw:ppd} used it to find the highest power of a prime which divides a generalized binomial coefficient. \bth[Kummer] Let $p$ be prime and let $\De_p(n)=(n_i)$, $\De_p(k)=(k_i)$. Then $\om_p {n\choose k}$ is the number of carries in performing the addition $\De_p(k)+\De_p(n-k)$. Equivalently, it is the number of indices $i$ such that either $k_i>n_i$ or there exists an index $jn_j$ and $k_{j+1}=n_{j+1},\ldots,k_i=n_i$.\Qqed \eth Now everything is in place to state and prove our principal theorem. \bth \label{main} Let $p$ be prime. Also let $\De_p(n)=(n_i)$, $\De_p(k)=(k_i)$ and $\om=\om_p(n)$. Then $p\nmid N(n,k)$ if and only if one of the two following conditions hold: \ben \item When $p \nmid n$ we have \ben \item $k_i\le n_i$ for all $i$, and \item $k_j < n_j$ where $j$ is the first index with $k_j\neq p-1$ (if such an index exists). \een \item When $p\mid n$ we have \ben \item $k_i\le n_i$ for all $i>\om$, and \item $k_\om < n_\om$, and \item $k_0=k_1=\ldots=k_{\om-1}= \case{0}{if $p\mid k$;}{p-1}{if $p\nmid k$.}$ \een \een \eth \pf First suppose that $p$ is not a divisor of $n$. Then $p$ does not divide $N(n,k)$ if and only if $p$ divides neither ${n\choose k}$ nor ${n\choose k+1}$. By Kummer's theorem this is equivalent to $k_i\le n_i$ and $(k+1)_i\le n_i$ for all $i$. However, if $j$ is the first index with $k_j\neq p-1$, then we have $$ (k+1)_i= {\left\{\barr{ll}0&\mbox{if $ij$.} \earr\right.} $$ So these conditions can be distilled down to insisting that $k_j